

# RINNO PROJECT Report

An augmented intelligence-enabled stimulating framework for deep energy renovation delivering occupant-centred innovations

## Deliverable 1.10:

Architecture of RINNO Suite along with its Functional Technical Specifications (V3)

Work Package 1: RINNO Augmented Intelligence Renovation Framework

**CERTH** 

October 2023

ent Information

Title: An augmented intelligence-enabled stimulating



|                           | framework for deep energy renovation delivering occupant-centred innovations                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|
| Author(s):                | CERTH                                                                                                             |
| Editor(s):                | CERTH                                                                                                             |
| Reviewed By:              | RINA-C<br>MOTIVIAN                                                                                                |
| Document Nature:          | Report                                                                                                            |
| Date:                     | 17/10/2022                                                                                                        |
| Dissemination Level:      | Public                                                                                                            |
| Status:                   | Final                                                                                                             |
| Copyright:                | © RINNO  Copies of this publication – also of extracts thereof – may only be made with reference to the publisher |
| Grant Agreement<br>Number | 892071                                                                                                            |

#### Disclaimer

This document reflects only the author's views, and the European Union is not liable for any use that may be made of the information contained therein.

## Revision History

| Version | Editor(s)      | Date              | Change Log                                   |  |
|---------|----------------|-------------------|----------------------------------------------|--|
| 0.1     | CERTH          | August 2023       | Integration by CERTH                         |  |
| 0.2     | CERTH          | August 2023       | Addressing comments from 1st internal review |  |
| 0.3     | RINA, MOTIVIAN | September<br>2023 | PEER review                                  |  |
| 0.4     | CERTH          | September<br>2023 | Integration of comment from PEER review      |  |
| 0.5     | RINA           | October 2023      | Final review before the submission           |  |
| 0.6     | CERTH          | April 2025        | Integration of comment                       |  |
| 0.7     | RINA           | August 2025       | Final review before the submission           |  |

## **Executive Summary**

RINNO Suite is an augmented intelligence framework designed to streamline and enhance deep energy renovation through a user-centric approach. It facilitates all phases of building renovation, including planning and design, retrofitting, and monitoring. By integrating cost-effective, environmentally friendly, multi-functional, and easily applicable building-related solutions, along with innovative retrofitting processes, methods, and tools, RINNO aims to optimize renovation efficiency.

This deliverable presents the final version of the RINNO Suite architecture, detailing its components, sub-components, interfaces, and connections with external systems. The document provides a comprehensive overview of the methodology and procedures used in the architecture's development, following the IEEE 42010 standard for "Systems and Software Engineering — Architecture Description." The architectural design process is structured into four key phases: elicitation of use cases, stakeholders' requirements and market needs, conceptual architecture definition, system's structural view, and specification of architectural elements.

A detailed identification of stakeholders and their concerns is provided in Chapter 3, while Chapter 4 presents the conceptual architecture of RINNO Suite. The architectural framework is structured around three primary viewpoints:

- Functional View (Chapter 5): Defines the components, their functionalities, and interactions. This document builds upon previous deliverables by clarifying which components are utilized by different groups of RINNO's stakeholders and providing an updated list of key performance indicators (KPIs), specifying the input required for each KPI.
- Deployment View (Chapter 6): Outlines the technical requirements, dependencies, and system implementation details.
- Information View (Chapter 7): Describes information flow, data distribution, and application domain models.

RINNO Suite has been deployed under real conditions at four large-scale demo sites in France, Greece, Poland, and Denmark covering diverse market needs and use cases. This deliverable represents the conclusive architectural documentation, ensuring a fully integrated and operational system, ready for large-scale deployment.

#### Table of Contents

| Document Information                                                                                                                                                                                                                               | 1        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Revision History                                                                                                                                                                                                                                   | 3        |
| Executive Summary                                                                                                                                                                                                                                  | 4        |
| Table of figures                                                                                                                                                                                                                                   | 7        |
| List of tables                                                                                                                                                                                                                                     |          |
| Abbreviations List                                                                                                                                                                                                                                 | 11       |
| 1 Introduction                                                                                                                                                                                                                                     | 14       |
| 1.1 Scope, Context and Structure of this deliverable                                                                                                                                                                                               | 15       |
| 1.2 Background                                                                                                                                                                                                                                     |          |
| 1.3 Interaction with other Tasks and Work Packages                                                                                                                                                                                                 | 16       |
| 2 Architecture Design Approach & Methodology                                                                                                                                                                                                       |          |
| 2.1 Design principles                                                                                                                                                                                                                              | 17       |
| 2.2 Architectural Design Process  2.2.1 Phase 1: User & Business Requirements Definition  2.2.2 Phase 2: Conceptual Architecture Definition  2.2.3 Phase 3: System's Structural View  2.2.4 Phase 4: Detailed Architectural Elements Specification |          |
| 3 Identification of stakeholders and their concerns                                                                                                                                                                                                |          |
| 3.1 Designers Stakeholders' Concerns                                                                                                                                                                                                               |          |
| 3.2 Contractors and Subcontractors Stakeholders' Concerns                                                                                                                                                                                          |          |
| 3.3 Public bodies and administration Stakeholders' Concerns                                                                                                                                                                                        |          |
| 3.4 Building Owner and/or Resident Stakeholders' Concerns                                                                                                                                                                                          |          |
| 3.5 Industrial Stakeholders' Concerns                                                                                                                                                                                                              |          |
| 3.6 Other Stakeholders' Concerns                                                                                                                                                                                                                   | 28       |
| 4 Conceptual Architecture                                                                                                                                                                                                                          | 29       |
| 4.1 RINNO Interaction Layer                                                                                                                                                                                                                        |          |
| 4.2 RINNO Services Layer 4.2.1 RINNO Building Lifecycle Renovation Manager 4.2.2 RINNO Retrofitting Manager 4.2.3 RINNO Planning and Design Assistant                                                                                              | 32<br>34 |
| 4.3 RINNO Physical Layer 4.3.1 RINNO Renovation Repository 4.3.2 RINNO Multi-Sensorial Network                                                                                                                                                     | 36       |
| 4.4 RINNO Horizontal Layer                                                                                                                                                                                                                         | 37       |
| 5 Functional View                                                                                                                                                                                                                                  |          |
|                                                                                                                                                                                                                                                    |          |

5

| 5.1 RINNO Functional Architecture                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.2 Overview of the main components, modules, and sub-modules                                                                                                                                                                                                                                                                                                                                                                                                             | 38 |
| 5.2.1 RINNO Operational Interface with Augmented Intelligence                                                                                                                                                                                                                                                                                                                                                                                                             | 38 |
| 5.2.2 RINNO Planning & Design Assistant (RPDA)                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 5.2.3 RINNO Retrofitting Manager (RRM)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56 |
| 5.2.4 Building Lifecycle Renovation Manager (BLRM)                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 5.2.5 RINNO Renovation Repository                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 5.2.6 Multi - Sensorial Network                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 5.2.7 Middleware                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 5.2.8 Renovation Workflow & Transactions Manager (RWTM)                                                                                                                                                                                                                                                                                                                                                                                                                   | 74 |
| 6 Deployment View                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78 |
| 6.1 RINNO Main Components, Modules, and Sub-modules Deployment Environment & Hardware and Technical Requirements  6.1.1 RINNO Operational Interface with Augmented Intelligence 6.1.2 RINNO Planning & Design Assistant (RPDA)  6.1.3 RINNO Retrofitting Manager (RRM)  6.1.4 Building Lifecycle Renovation Manager (BLRM)  6.1.5 RINNO Renovation Repository  6.1.6 Multi - Sensorial Network  6.1.7 Middleware  6.1.8 Renovation Workflow & Transactions Manager (RWTM) |    |
| 7 Information View                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97 |
| 7.1 Overview of Information View                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97 |
| 7.2 Components of Information View per renovation phase                                                                                                                                                                                                                                                                                                                                                                                                                   | 99 |
| 8 Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |

# Table of figures

| Figure 1 - Interaction with other Tasks and Work Packages                    | 16 |
|------------------------------------------------------------------------------|----|
| Figure 2 - Design Approach for System Architecture                           | 17 |
| Figure 3 - Conceptual Architecture organized in layers                       |    |
| Figure 4 - Overall Functional View                                           | 38 |
| Figure 5 - Social Collaboration platform's Component Diagram                 | 39 |
| Figure 6 - Marketplace Component Diagram                                     | 41 |
| Figure 7 - Building Monitoring System Component Diagram                      | 42 |
| Figure 8 - Building Performance Toolkit & Dashboard Components Diagram       | 44 |
| Figure 9 - Building Capturing and Mapping Component Diagram                  | 45 |
| Figure 10 - Renovation Digital-Twin Component Diagram                        | 47 |
| Figure 11 - Energy Assessment tool Component Diagram                         | 49 |
| Figure 12 - Environmental, Cost and Social Assessment tool Component Diagram | 51 |
| Figure 13 - Techno-economical Assessment Tool Component Diagram              | 53 |
| Figure 14 - RINNO Renovation Optimizer and Planner Component Diagram         | 55 |
| Figure 15 - On-the-Job AR Environment Component Diagram                      | 58 |
| Figure 16 - RINNO Retrofitting Manager Engine Component Diagram              | 60 |
| Figure 17 - E-cockpit Component Diagram                                      |    |
| Figure 18 - Offsite/Onsite strategy Component Diagram                        | 66 |
| Figure 19 - E-logistics Component Diagram                                    |    |
| Figure 20 - Intelligent Renovation Assistant Component Diagram               |    |
| Figure 21 - RINNO Renovation Repository Component Diagram                    |    |
| Figure 22 - Multi-Sensorial Network Component Diagram                        |    |
| Figure 23 - Middleware Component Diagram                                     |    |
| Figure 24 - Renovation Workflow Tool Component Diagram                       | 75 |
| Figure 25 - Transaction Manager Component Diagram                            | 77 |
| Figure 26 - Social Collaboration Platform Deployment View                    | 78 |
| Figure 27 - Marketplace Deployment View                                      |    |
| Figure 28 - Building Monitoring System Deployment View                       |    |
| Figure 29 - Building Performance Toolkit & Dashboard Deployment View         |    |
| Figure 30 - RINNO Renovation Optimizer and Planner's Deployment View         |    |
| Figure 31 - Energy Assessment Platform's Deployment View                     |    |
| Figure 32 - Techno-economical Assessment Tool Deployment View                |    |
| Figure 33 - Environmental, Cost and Social Assessment Tool's Deployment View |    |
| Figure 34 - Building Capturing and Mapping Deployment View                   |    |
| Figure 35 - Renovation Digital Twin Deployment View                          |    |
| Figure 36 - On-the-Job AR Environment Deployment View                        |    |
| Figure 37 - RINNO Retrofitting Manager Engine Deployment View                |    |
| Figure 38 - E-Cockpit Deployment View                                        |    |
| Figure 39 - E-Logistics Deployment View                                      |    |
| Figure 40 - Optimization Strategy offsite/onsite tool Deployment View        |    |
| Figure 42 - Intelligent Renovation Assistant Deployment View                 |    |
| Figure 42 - RINNO Renovation Repository Deployment View                      |    |
| Figure 43 - Multi-Sensorial Network Deployment View                          |    |
| Figure 45 - Renovation Workflow Manager Tool Deployment View                 |    |
| Figure 46 - Renovation Transaction Manager Tool Deployment View              |    |
| Figure 47 - Overall Information View of Architecture                         |    |
| 1 1901 - 47 - OVERUIT ITTIOTTIUTOTT VIEW OF AICHTIECTURE                     | 70 |

## List of tables

| Table 1 – List of Components                                                   | 20  |
|--------------------------------------------------------------------------------|-----|
| Table 2 - Definition of Stakeholders in the Stakeholders Map                   | 26  |
| Table 3 - Definition of the components used by the different stakeholders      | 29  |
| Table 4 - Social Collaboration Platform - Inputs                               |     |
| Table 5 - Social Collaboration Platform - Outputs                              | 40  |
| Table 6 - Marketplace - Inputs                                                 |     |
| Table 7 - Marketplace - Outputs                                                |     |
| Table 8 - Building Monitoring System – Inputs                                  |     |
| Table 9 - Building Monitoring System - Outputs                                 |     |
| Table 10 - Building Performance Toolkit & Dashboard - Inputs                   | 44  |
| Table 11 - Building Capturing and Mapping - Inputs                             | 45  |
| Table 12 - Building Capturing and Mapping - Outputs                            | 46  |
| Table 13 - Renovation Digital-Twin - Inputs                                    | 47  |
| Table 14 - Renovation Digital-Twin - Outputs                                   | 48  |
| Table 15 - Energy Assessment tool - Inputs                                     | 49  |
| Table 16 - Energy Assessment tool - Component outputs                          | 50  |
| Table 17 - Environmental, Cost and Social Assessment tool - Inputs             | 51  |
| Table 18 - Environmental, Cost and Social Assessment tool – Outputs            | 52  |
| Table 19 - Techno-economical Assessment Tool - Inputs                          |     |
| Table 20 - Techno-economical Assessment Tool - Outputs                         |     |
| Table 21 - RINNO Renovation Optimizer and Planner - Inputs                     | 55  |
| Table 22 - RINNO Renovation Optimizer and Planner - Outputs                    | 56  |
| Table 23 - On-the-Job AR Environment - Inputs                                  |     |
| Table 24 - On-the-Job AR Environment - outputs                                 | 59  |
| Table 25 - RINNO Retrofitting Manager Engine - Inputs                          |     |
| Table 26 - RINNO Retrofitting Manager Engine - Outputs                         |     |
| Table 27 - E-Cockpit - Inputs                                                  |     |
| Table 28 - Offsite/Onsite strategy - Inputs                                    |     |
| Table 29 - Offsite/Onsite strategy - Outputs                                   |     |
| Table 30 - E-logistics - Inputs                                                |     |
| Table 31 - E-logistics - Outputs                                               |     |
| Table 32 - Intelligent Renovation Assistant - Inputs                           |     |
| Table 33 - Intelligent Renovation Assistant - outputs                          |     |
| Table 34 - Renovation Repository - Inputs                                      |     |
| Table 35 - Multi-Sensorial Network - Outputs                                   |     |
| Table 36 - Middleware - Inputs                                                 |     |
| Table 37 - Middleware - Outputs                                                |     |
| Table 38 - Renovation Workflow Tool - Inputs                                   |     |
| Table 39 - Renovation Workflow Tool - Outputs                                  |     |
| Table 40 - Transaction Manager - Inputs                                        |     |
| Table 41 - Transaction Manager - Outputs                                       |     |
| Table 42 - Social Collaboration platform's Hardware and Technical Requirements |     |
| Table 43 - Marketplace Hardware and Technical Requirements                     |     |
| Table 44 - Building Monitoring System Hardware and Technical Requirements      | 80  |
| Table 45 - Building Performance Toolkit & Dashboard Hardware and Technical     | 0.1 |
| Requirements                                                                   | ୪I  |
| Table 46 - RINNO Renovation Optimizer and Planner Hardware and Technical       | 00  |
|                                                                                | 82  |
| Table 47 - Energy Assessment Platform's Hardware and Technical Requirements    | ರડ  |

| Table 48 - Techno-economical Assessment Tool Hardware and Technical             |    |
|---------------------------------------------------------------------------------|----|
| Requirements                                                                    | 84 |
| Table 49 - Environmental, Cost and Social Assessment Hardware and Technical     |    |
| Requirements                                                                    | 84 |
| Table 50 - Building Capturing and Mapping Hardware and Technical Requirements   | 85 |
| Table 51 - Renovation Digital Twin Hardware and Technical Requirements          | 86 |
| Table 52 - On-the-Job AR Environment Hardware and Technical Requirements        |    |
| Table 53 - RINNO Retrofitting Manager Engine Hardware and Technical             |    |
| Requirements                                                                    | 88 |
| Table 54 - E-Cockpit Hardware and Technical Requirements                        | 89 |
| Table 55 - E-Logistics Hardware and Technical Requirements                      | 90 |
| Table 56 - Optimization Strategy offsite/onsite tool Hardware and Technical     |    |
| Requirements                                                                    | 91 |
| Table 57 - Intelligent Renovation Assistant Hardware and Technical Requirements | 92 |
| Table 58 - RINNO Renovation Repository Technical and Hardware Specifications    | 93 |
| Table 59 - Multi-Sensorial Network Hardware and Technical Requirements          | 94 |
| Table 60 - Middleware Hardware and Technical Requirements                       | 95 |
| Table 61 - Renovation Workflow Manager Hardware and Technical Requirements      | 96 |
| Table 62 - Renovation Transaction Manager Hardware and Technical Requirements   |    |
|                                                                                 | 97 |
|                                                                                 |    |

## Abbreviations List

| AEC  | Architecture, Engineering &<br>Construction |  |  |  |
|------|---------------------------------------------|--|--|--|
| AHP  | Analytical Hierarchy Process                |  |  |  |
| Al   | Artificial Intelligence                     |  |  |  |
| API  | Application Programming Interface           |  |  |  |
| AR   | Augmented Reality                           |  |  |  |
| BEMS | Building Energy Management System           |  |  |  |
| BIM  | Building Information Model                  |  |  |  |
| BLRM | Building Lifecycle Renovation Manager       |  |  |  |
| BoQ  | Bill of Quantities                          |  |  |  |
| BRPs | Building Renovation Passports               |  |  |  |
| CAD  | Computer-Aided design                       |  |  |  |
| CIM  | Common Information Model                    |  |  |  |
| CIT  | Common Information Translator               |  |  |  |
| CPU  | Central Processing Unit                     |  |  |  |
| CSS  | Cascading Style Sheet                       |  |  |  |
| DLT  | Distributed Ledger Technologies             |  |  |  |
| DoPW | Digital Plan of Work                        |  |  |  |
| DRIP | Deep Renovation Digital Plan                |  |  |  |
| EU   | European Union                              |  |  |  |
| GB   | Giga Byte                                   |  |  |  |
| GHG  | Greenhouse Gases                            |  |  |  |
| GPU  | Graphics Processing Unit                    |  |  |  |
| HMI  | Human Machine Interface                     |  |  |  |
| HTML | Hyper-Text Markup Language                  |  |  |  |
| IAI  | International Alliance for                  |  |  |  |

|           | Interoperability                                                     |  |  |  |
|-----------|----------------------------------------------------------------------|--|--|--|
| IAM       | Identity and Access Management                                       |  |  |  |
| IEEE      | Institute of Electrical and Electronics<br>Engineers                 |  |  |  |
| loT       | Internet of Things                                                   |  |  |  |
| KPI       | Key Performance Indicator                                            |  |  |  |
| LCA       | Life Cycle Assessment                                                |  |  |  |
| rcc       | Life Cycle Costing                                                   |  |  |  |
| PC        | Personal Computer                                                    |  |  |  |
| PROMETHEE | Preference Ranking Organization<br>Method for Enrichment Evaluations |  |  |  |
| PV        | Photo Voltaic                                                        |  |  |  |
| RAM       | Random Access Memory                                                 |  |  |  |
| RES       | Renewable Energy Source                                              |  |  |  |
| RMCP      | RINNO Marketplace & Collaboration Platform                           |  |  |  |
| ROM       | Read-Only Memory                                                     |  |  |  |
| RPDA      | RINNO Planning & Design Assistant                                    |  |  |  |
| RRM       | RINNO Retrofitting Manager                                           |  |  |  |
| RRR       | RINNO Renovation Repository                                          |  |  |  |
| RWM       | Renovation Workflow Manager                                          |  |  |  |
| RWTM      | Renovation Workflow & Transactions  Manager                          |  |  |  |
| SCB       | Smart Connected Buildings                                            |  |  |  |
| S-LCA     | Social Life Cycle Assessment                                         |  |  |  |
| SQL       | Standardized Query Language                                          |  |  |  |
| TEA       | Techno-economical Assessment                                         |  |  |  |
| UI        | User Interface                                                       |  |  |  |

| UML | Unified Modelling Language |  |  |
|-----|----------------------------|--|--|
| USB | Universal Serial Bus       |  |  |
| VR  | Virtual Reality            |  |  |
| WP  | Work Package               |  |  |

#### 1 Introduction

The purpose of this deliverable is to present a comprehensive architectural design for the RINNO Suite, detailing its structure, functionality, and deployment approach. RINNO is a renovation-focused platform designed to enhance and streamline building lifecycle renovation processes through advanced digital tools and methodologies. This document outlines the key architectural principles, stakeholders' concerns, and the system's conceptual and functional structure, ensuring a well-coordinated and effective implementation of RINNO's capabilities.

The document begins by introducing the Architecture Design Approach & Methodology, which defines the foundational design principles and the structured process followed to develop the RINNO architecture. This includes four key phases: identifying user and business requirements, conceptualizing the architecture, defining the system's structural view, and specifying detailed architectural elements. These phases ensure that the architecture aligns with user needs while maintaining technical feasibility and scalability.

Following this, the Identification of Stakeholders and their Concerns section highlights the diverse groups involved in the RINNO ecosystem. These stakeholders include designers, contractors, public bodies, building owners, industrial stakeholders, and others, each with distinct concerns that influence the architectural decisions. Addressing these concerns ensures the system meets regulatory, operational, and functional expectations across various domains.

The Conceptual Architecture section provides a high-level view of the RINNO system, breaking it down into four primary layers: the Interaction Layer, Services Layer, Physical Layer, and Horizontal Layer. These layers encompass key components such as the RINNO Operational Interface with Augmented Intelligence, Building Lifecycle Renovation Manager, Retrofitting Manager, Planning and Design Assistant, Multi-Sensorial Network, and Middleware. These components work cohesively to support the full renovation lifecycle.

The Functional View delves deeper into the specific modules and sub-modules that constitute RINNO's architecture. This section provides an overview of the main components, detailing their roles and interactions. Functional modules such as the RINNO Operational Interface, Retrofitting Manager, Planning & Design Assistant, and Renovation Workflow & Transactions Manager ensure that all necessary functionalities are efficiently integrated and executed within the system.

The Deployment View outlines the technical and hardware requirements for deploying the RINNO Suite. This section specifies the deployment environment for each main component, ensuring that the architecture is adaptable to real-world operational settings. The deployment strategy considers scalability, security, and integration with existing infrastructure to facilitate seamless implementation.

Finally, the Information View provides an overview of how data is structured, managed, and utilized throughout the renovation phases. This section details the components involved in information processing, ensuring a structured and coherent approach to handling renovation data efficiently.

By providing a structured and detailed architectural framework, this deliverable ensures that RINNO's development aligns with industry standards, stakeholder requirements, and technological advancements, paving the way for an effective and innovative renovation management system.

Below is a brief description of the objectives, the context, and the structure of the deliverable. It also outlines its background and its interaction with other Tasks and Work Packages.

#### 1.1 Scope, Context and Structure of this deliverable

The deliverable presents the final version of the RINNO Suite, serving as a definitive reference for its implementation and integration. The scope of this deliverable includes a detailed description of the main components of the RINNO Suite, their functional features, and interactions. Additionally, it defines the system architecture, specifying component interfaces and their interaction mechanisms to guarantee seamless interoperability. By providing a comprehensive and final specification, this document ensures that the RINNO Suite is fully prepared for deployment, addressing both technical and operational considerations.

Within Chapter 2 of the deliverable the design approach, the methodology and the design principles that was followed to design the architecture has been defined. Chapter 3 contains a brief identification of the stakeholders and their concerns. Chapter 4 provides the conceptual architecture. In the four following chapters, the views of the architecture are presented, namely functional view (Chapter 5), deployment view (Chapter 6) and information view (Chapter 7). In the final chapter, the conclusions of the document are depicted.

#### 1.2 Background

RINNO project gathers the requirements of the stakeholders, as well as the features of the building, and provides a set of efficient solutions, from its Renovation Repository. During the design phase, a range of applicable scenarios are generated upon a virtual representation of the building (Digital-Twin). RINNO Suite introduces a Decision Support System to assist users choosing the optimal scenarios, according to Key Performance Indicators. During the retrofitting phase, the system proposes a variety of tools and methods to reduce installation time and cost, and occupant's disturbance. Those tools and methods include novel construction offsite and onsite strategies to optimize logistics and installation processes, as well as AR devices to facilitate on-the-job training for the workers. Furthermore, the system provides an operational platform with augmented intelligence for the monitoring phase. Through a Multi-sensorial network installed at the buildings, the system collects data related to the building performance, thus the Renovation Manager can compare the actual and the designed performance. To exchange the knowledge, the information, and the solutions of the system, RINNO Suite introduces the Marketplace and Social Collaboration Platform. In that way, all the participants, including workers, engineers, tenants, as well as investors can exchange their experiences and their practices and provide each other assistance at all renovation phases. Finally, RINNO Suite, during the whole lifecycle of the renovation process, utilizes the Renovation Workflow and Transactions Manager to optimize the supervision and the management of the

project, and to ensure the speed up and the transparency of the transactions. The solutions developed by RINNO project are demonstrated at four large scale pilot sites covering different EU climatic zones and markets in France, Denmark, Greece, and Poland.

#### 1.3 Interaction with other Tasks and Work Packages

This section describes the interaction between the Tasks, the Work Packages, and the architecture documentation. Task 1.1 defines the stakeholder's requirements and the market needs. More particularly, the elicitation of the stakeholder's requirements has been carried out along two axes. Firstly, an online questionnaire submitted to the RINNO partners along with a deep analysis of the literature and a review of the most relevant H2020 project from a technical, economic and social aspect. Secondly, T1.1 defines specific tables concerning the innovation content that has been updated through the lifetime of the project. These tables are part of RINNO Renovation Repository and they represent an initial step of the development of the technology roadmap and the commercial potential of the project (e.g. Table 1). Accordingly, stakeholder's requirements are inputs of T1.3 in terms of building renovation expectations from Task 1.1. Task 1.3 collects the requirements of stakeholders, identifies the demo users and their necessities, according to the questionnaire results, as well as the existing conditions of the building from an energy, architectural and structural point of view. Finally, after the assessment of RINNO solutions and technologies, Task 1.3 defines the scenarios use cases for each demo. The outputs of Task 1.3 helped the formation of the architecture and define the connection between the use cases and platform modules of the present Task (T1.5).

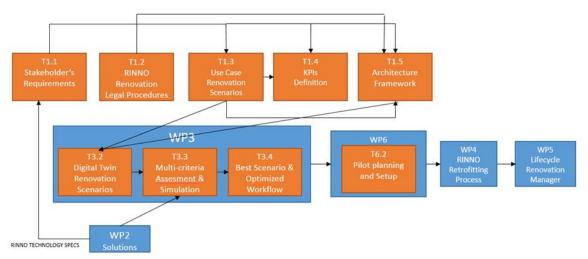



Figure 1 - Interaction with other Tasks and Work Packages

## 2 Architecture Design Approach & Methodology

This section describes the Architectural Design Approach for the RINNO project. The descriptions in this report include the design methodology and the design principles of the system architecture. The overall design process is divided into four phases, firstly the stakeholder's requirements and market need as well as the use case scenarios, moving to the conceptual architecture that describes the workflow of the renovation of the RINNO project, towards the structural view of the system and finally the detailed architectural elements specification. Each phase is based on the previous one, but the design approach for the System Architecture is an iterative procedure, as new requirements and needs can be identified throughout the project. An overview of the approach is depicted in the figure below.

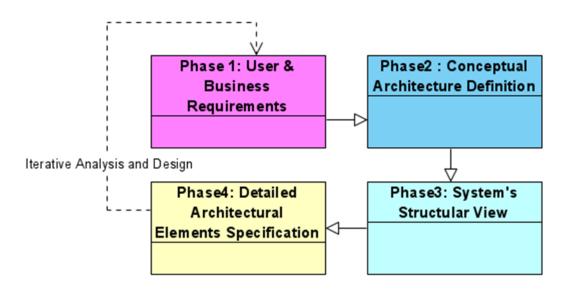



Figure 2 - Design Approach for System Architecture

#### 2.1 Design principles

The architecture of the system should be open and modular, in that way suppliers, vendors, users and other potential actors of the project could capitalize on the distinct functionalities of the system. The architecture should be as technology independent as possible, and should include generic solutions when key technologies (open source or commercial) are available. The following principles have been specified in order to ensure that the implemented architecture promotes cost efficiency, extendibility and modularity:

- <u>Separation of concerns</u>: The system is divided into distinct features, and each one addresses different concern. The prime goal is to minimize interaction points and increase cohesion and low coupling.
- <u>Single Responsibility</u>: Each module of the system only answers a specific question and is responsible for a single functionality or even aggregation of cohesive functionality.
- <u>Least Knowledge</u>: Each architectural component has limited knowledge about other components.

- <u>Don't repeat yourself</u>: According to this principle, a specific functionality or intent is implemented in only one component.
- <u>Minimize upfront design</u>: In the first steps of the architecture implementation, only the necessary functionalities and methods were designed, because the design of the final architecture has been developed during the execution of the project.

#### 2.2 Architectural Design Process

As mentioned before, the Design Process consists of four phases. Each phase feeds the next one, but the whole process is an iterative procedure, as new stakeholder's requirements or market needs may occur throughout the project.

#### 2.2.1 Phase 1: User & Business Requirements Definition

The first phase of the architectural design contains the elicitation of stakeholder's requirements and market needs (within Task T1.1) as well as the use case renovation scenarios (within Task T1.3). Based on the context of the above-mentioned Tasks (T1.1 and T1.3) delivered in detail the technical description of the overall RINNO Suite and the specifications for each of its key components, modules and their functionalities.

#### 2.2.2 Phase 2: Conceptual Architecture Definition

Throughout the second phase, a high-level conceptual view of the overall system is defined. The major components are identified along with their high-level requirements, providing the concept behind the implementation of the system. RINNO Suite organizes its core components into the proposed conceptual/technical architecture. Conceptual architecture is described in detail in Chapter 4.

#### 2.2.3 Phase 3: System's Structural View

The designing approach of the architecture follows the standard IEEE 42010 "Systems and software engineering — Architecture description". This procedure is suitable for the architectural description of software intensive systems. This technique defines a set of patterns, rules, and templates on how to construct a type of view. Thus, throughout the third phase, the system is further analysed, following a static and dynamic view analysis, based on three architecture viewpoints and on Use cases. In particular:

- Within the **Static View**, a detailed analysis of the system architecture in distinct components are presented, which define their interconnection from a functional view (Chapter 5). Also, a detailed deployment view of the system along with its deployment is presented (Chapter 6).
- Within the **Dynamic View**, , the dynamic behaviour of the system is defined (Chapter 6). Furthermore, the information flow between the components is presented from an informational view (Chapter 7).

#### 2.2.4 Phase 4: Detailed Architectural Elements Specification

In this fourth and final step, all the key elements of RINNO suite are described in detail to provide a deep view on the system and to ensure interoperability between the components. Moreover, an analysis of the components along with their modules and their sub-modules is performed in Chapter 5. More specifically, at the Functional View there is a detailed presentation of the internals of the components, the interfaces, the data types and as well as their components diagrams with their inputs and outputs.

Finally, the table depicted below contains the full list of main components brought by individual partners and a brief definition of all of them, along with the modules, the sub-modules, and the background technologies.

Furthermore, the following Table illustrates the detailed components and their submodules that together they comprised of the RINNO framework.

Table 1 – List of Components

| Main component                       | Module                                                                                                                           | Sub-module                                      | Name of Background<br>Technology                                                                                                                                                                                                                                                                                                                                               | Input                                                                                                                                                                                                                                                                                                                                                                                                              | Output                                                                                                                                                                                                                                                                                        | Responsible partner               |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| RINNO Renovation<br>Repository (RRR) | Modular Building Envelope Solutions  RES Harvesting Solutions  Storage Solutions  Multi-functional Hybrid Retrofitting Solutions | N/A N/A N/A                                     | 1) Bio-based double layer panels 2) Bio-based pipes and sheets 3) Isocell Cellulose Insulation 4) Thermochromic Glass 5) K-BOX bio-based insulating system for parts of energy systems 1) Building integrated photovoltaic glass 2) MicroVent sustainable Ventilation system 1) De-centralized domestic hot water preparation 1) Climate Cover PV - Roof and -Facade solutions | <ul> <li>Time saved [h] in comparison to the market reference conventional solutions</li> <li>% of biobased materials in the technology</li> <li>Weight of technology solution considered in the renovation process (not considering ancillary materials)</li> <li>% of recycled materials in the solution</li> <li>Solutions waste reduction ratio in comparison to the reference conventional system.</li> </ul> | <ul> <li>Design and installation time saved</li> <li>Cost savings in design</li> <li>Reduction of cost overruns</li> <li>Use of bio-based materials</li> <li>Use of recyclable materials</li> <li>Use of recycled materials</li> <li>Waste reduction</li> <li>Material use avoided</li> </ul> | K-FLEX  GREENSTRUCT  PINK  EKOLAB |
|                                      |                                                                                                                                  | Computerize d systems                           | N/A                                                                                                                                                                                                                                                                                                                                                                            | Time series from installed devices per                                                                                                                                                                                                                                                                                                                                                                             | Time outside thermal                                                                                                                                                                                                                                                                          | MOTIVIAN                          |
| Middleware                           | IoT Sensorial Network & Control                                                                                                  |                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                            | <ul><li>pilot site</li><li>BIM information</li></ul>                                                                                                                                                                                                                                                                                                                                                               | <ul><li>comfort range</li><li>Time outside indoor</li></ul>                                                                                                                                                                                                                                   | MOTIVIAN                          |
| Infrastructure                       | System                                                                                                                           | Energy<br>monitoring<br>devices –<br>Performanc | N/A                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    | air quality range  Acoustic                                                                                                                                                                                                                                                                   | MOTIVIAN                          |

| Main component                                 | Module                                           | Sub-module                                                    | Name of Background<br>Technology                                                       | Input                                                                                                                     | Output                                                                                                                                                                                   | Responsible partner |
|------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                |                                                  | е                                                             |                                                                                        |                                                                                                                           | characteristics                                                                                                                                                                          |                     |
|                                                |                                                  | Dashboard                                                     |                                                                                        |                                                                                                                           | Visual Comfort     (building)                                                                                                                                                            |                     |
|                                                |                                                  | loT Device<br>Managers                                        | N/A                                                                                    |                                                                                                                           | Visual comfort (user and control system)                                                                                                                                                 | MOTIVIAN            |
|                                                | Common<br>Information<br>Translator (CIT)        | Common<br>Information<br>Model (CIM)<br>- BIM models<br>(icf) | N/A                                                                                    | (contributes to the integration of the system)                                                                            | Energy consumption     (contributes to the integration of the system)                                                                                                                    | CERTH               |
|                                                | Middleware                                       | Middleware<br>engine                                          | N/A                                                                                    | (contributes to the integration of the system)                                                                            | (contributes to the integration of the system)                                                                                                                                           | MOTIVIAN            |
| RINNO Planning &<br>Design Assistant<br>(RPDA) |                                                  | Building<br>Capturing &<br>Mapping                            | COCKPIT platform for<br>automated progress,<br>quality & security<br>control by drones | -                                                                                                                         | -                                                                                                                                                                                        | BOUYGUES            |
|                                                | Renovation<br>Modelling                          | Digital Twin                                                  | Renovation Digital-Twin                                                                | BIM model     Qualitative scenarios     Technology specifications                                                         | <ul> <li>Quantitative scenarios</li> <li>Initial estimations of building energy performance</li> </ul>                                                                                   | VTT                 |
|                                                | Renovation<br>Simulation &<br>Assessment toolbox | Energy<br>Assessment<br>tool                                  | INTEMA.Building                                                                        | <ul> <li>BIM model</li> <li>Technology<br/>specifications</li> <li>Renovation<br/>Scenarios<br/>(quantitative)</li> </ul> | <ul> <li>Decrease in Energy<br/>Consumption</li> <li>Savings in Final Energy<br/>consumption for<br/>heating</li> <li>Savings in Final Energy<br/>consumption for<br/>cooling</li> </ul> | CERTH               |

| Main component | Module                                                      | Sub-module                          | Name of Background<br>Technology              | Input                                                                       | Output                                                                | Responsible partner |
|----------------|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|
|                |                                                             |                                     |                                               |                                                                             | Savings in Final Energy consumption for DHW                           |                     |
|                |                                                             |                                     |                                               |                                                                             | Increase in RES based electricity production                          |                     |
|                |                                                             |                                     |                                               |                                                                             | Increase in RES based<br>heating production                           |                     |
|                |                                                             |                                     |                                               | <ul><li>Renovation Scenario</li><li>Technology<br/>specifications</li></ul> | Yearly Primary energy savings                                         |                     |
|                |                                                             |                                     | VERIFY and S-LCA assessment toolkits          | <ul> <li>Energy data series from INTEMA</li> </ul>                          | Yearly Energy Self-<br>Supply by RES                                  |                     |
|                | Environment<br>al, Cost and<br>Social<br>Assessment<br>tool |                                     |                                               |                                                                             | Yearly Lifecycle Life<br>Cycle Global<br>Warming Potential<br>savings |                     |
|                |                                                             | al, Cost and<br>Social              |                                               |                                                                             | Yearly Embodied     Energy                                            | CERTH, CIRCE        |
|                |                                                             |                                     |                                               |                                                                             | Yearly Water Footprint                                                |                     |
|                |                                                             |                                     |                                               |                                                                             | Yearly Lifecycle Cost Savings                                         |                     |
|                |                                                             |                                     |                                               |                                                                             | Initial Investment (CAPEX)                                            |                     |
|                |                                                             |                                     |                                               |                                                                             | Annual O&M Costs                                                      |                     |
|                |                                                             |                                     |                                               |                                                                             | Payback Period                                                        |                     |
|                |                                                             |                                     |                                               |                                                                             | Return on Investment                                                  |                     |
|                |                                                             | Techno-<br>economical<br>assessment | Sustainable and cost-<br>effective renovation | Data from simulation<br>during design stage<br>and monitoring               | Waste production                                                      | RINA, UNN           |
|                |                                                             | tool                                | evaluation toolkit                            | during the operation                                                        | Duration of works                                                     |                     |

| Main component                      | Module                          | Sub-module                                                    | Name of Background<br>Technology                                                                                   | Input                                                                                                                                                                                                             | Output                                                                                                                                                  | Responsible partner |
|-------------------------------------|---------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                     |                                 |                                                               |                                                                                                                    |                                                                                                                                                                                                                   | Disruption Levels                                                                                                                                       |                     |
|                                     | Renovation                      | Dynamic<br>decision-<br>Dptimizer & Planner making<br>toolkit | Renovation Scenario<br>DSS                                                                                         | <ul> <li>Renovation scenarios</li> <li>Inputs from energy, LCA/LCC and technoeconomic assessment toolkits</li> <li>CERTH's postprocessing</li> </ul>                                                              | Optimum Renovation<br>Scenario                                                                                                                          | CERTH               |
|                                     |                                 |                                                               | Job Scheduling<br>Optimiser                                                                                        | Input from technoeconomic assessment tool     CERTH's post-processing                                                                                                                                             | Optimum Renovation<br>Workflow                                                                                                                          | CERTH               |
| RINNO Retrofitting<br>Manager (RRM) | Process Industrialization  Cock | Recommen<br>dation<br>Engine                                  | On-site & Off-site<br>assembling of prefab<br>solutions by<br>Cobots/Robots -<br>Construction 4.0 Suite            | <ul> <li>Lifecycle Cost<br/>Savings calculated<br/>in WP3</li> <li>Life Cycle<br/>Assessment</li> </ul>                                                                                                           | <ul><li>Waste production</li><li>Duration of works</li><li>Disruption Levels</li></ul>                                                                  | BOUYGUES            |
|                                     |                                 | Cockpit                                                       | COCKPIT platform for<br>automated progress,<br>quality & security<br>control by drones -<br>Construction 4.0 Suite | <ul> <li>calculated in WP3</li> <li>Information from technology providers</li> <li>CERTH's post-processing</li> <li>E-Cockpit monitoring calculations during the retrofitting process performed in WP4</li> </ul> | <ul> <li>Information from technology providers</li> <li>CERTH's post-</li> </ul> <ul> <li>Return on investment</li> <li>Payback period – EPP</li> </ul> | BOUYGUES            |
|                                     |                                 | 3D printing                                                   | 3D-printing -<br>Construction 4.0 Suite                                                                            |                                                                                                                                                                                                                   | Quality                                                                                                                                                 | BOUYGUES            |
|                                     |                                 | Process<br>Optimization<br>tool                               | VIA-PROCESS Business<br>Process Management -<br>BPM                                                                |                                                                                                                                                                                                                   | Scheduling     Environmental                                                                                                                            | BOUYGUES            |
|                                     | Process<br>Optimization         |                                                               | E-LOGISTICS platform<br>for optimized logistics                                                                    |                                                                                                                                                                                                                   | <ul> <li>Services and benefits</li> <li>Logistics</li> <li>E-cockpit KPI's from</li> </ul>                                                              | BOUYGUES            |

| Main component                                             | Module                                 | Sub-module                                               | Name of Background<br>Technology                                                                                  | Input | Output | Responsible partner |
|------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|--------|---------------------|
|                                                            |                                        |                                                          |                                                                                                                   |       | D1.7   |                     |
| On-the-Job AR<br>Environment                               | On-the- Job AR                         | AR<br>Assistance<br>tool                                 | AR suite ( AR Database, AR Manager, AR Viewer & AR Interfaces) – AR/VR enabled training and assistance            | -     | -      | CERTH               |
|                                                            | Environment                            | AR Training tool                                         | AR suite (AR Database,<br>AR Manager, AR<br>Viewer & AR<br>Interfaces) – AR<br>enabled training and<br>assistance | -     | -      | CERTH               |
|                                                            | RRM Engine                             | RRM engine                                               | SCB (Smart Connected Buildings) Dpow & xbimXplorer to be adapted into DRIP.                                       |       |        | UNN                 |
| Building Lifecycle<br>Renovation<br>Manager (BLRM)         |                                        | Renovation<br>Validation<br>and<br>Benchmarki<br>ng tool | N/A                                                                                                               | -     | -      | CERTH               |
|                                                            | Intelligent<br>Renovation<br>Assistant | Building<br>Renovation<br>Passports<br>(BRPs)            | N/A                                                                                                               | -     | -      | EKOLAB              |
|                                                            |                                        | Renovation<br>Roadmap<br>tool                            | N/A                                                                                                               | -     | -      | EKOLAB              |
|                                                            |                                        | Logbook<br>tool                                          | N/A                                                                                                               | -     | -      | EKOLAB              |
| Renovation<br>Workflow &<br>Transactions<br>Manager (RWTM) | Renovation workflow tool               | N/A                                                      | 1) VIA PROCESS                                                                                                    | -     | -      | UNN                 |
|                                                            | Transaction<br>manager toolkit         | N/A                                                      | Smart Contracts for<br>Multi-stakeholder<br>Transaction<br>Automation                                             | -     | -      | CERTH               |
| RINNO Operational                                          | RINNO Marketplace                      | RINNO                                                    | N/A                                                                                                               | -     | -      | CERTH               |

| Main component                                                     | Module            | Sub-module                                         | Name of Background<br>Technology                                                         | Input                                                                                  | Output                                                                                                       | Responsible partner |
|--------------------------------------------------------------------|-------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------|
| Interface with                                                     | & Collaboration   | Marketplace                                        |                                                                                          |                                                                                        |                                                                                                              |                     |
| Augmented<br>Intelligence                                          | Platform (RMCP)   | RINNO<br>Collaboratio<br>n Platform                | Social Collaboration-<br>Knowledge Sharing<br>platform                                   | Tenants' impact<br>during maintenance<br>activities                                    | <ul> <li>Frequency and duration of routine maintenance</li> <li>Frequency and duration of repairs</li> </ul> | CERTH               |
| Building Monitoring<br>System (IoT<br>Platform)  Central Dashboard |                   |                                                    |                                                                                          |                                                                                        | <ul> <li>Frequency and duration of replacements</li> </ul>                                                   |                     |
|                                                                    | System (IoT       | N/A                                                | 1) mSense tool for IoT management     2) Building Monitoring     System                  | Data from simulation<br>during design stage<br>and monitoring<br>during the operation  | Integration and<br>visualization of all<br>involved KPI's                                                    | MOTIVIAN            |
|                                                                    | Central Dashboard | Building<br>Performanc<br>e Toolkit &<br>Dashboard | Building     Performance     Evaluation toolkit      SCB (Smart     Connected Buildings) | Data from simulations during design stage, and from monitoring during operation (D1.7) | Integration and<br>visualization of all<br>involved KPI's                                                    | CERTH               |
|                                                                    |                   |                                                    | 3) Decision Support<br>System                                                            |                                                                                        |                                                                                                              |                     |
|                                                                    | AR UI             | AR suite – AR enabled training and assistance      |                                                                                          |                                                                                        | CERTH                                                                                                        |                     |

#### 3 Identification of stakeholders and their concerns

There is a wide range of stakeholders that participate in RINNO project, during all the phases of the project. In Deliverable D1.1 "RINNO Requirements and Renovation Technology Catalogue and Roadmap to TRL9 (v1)" a detailed identification of stakeholders was made. According to D1.1, six (6) stakeholders' groups have been defined, namely Designers, Contractor and Subcontractors, Building owner and/or residents, public bodies & administration, Industrial Stakeholders and Others. The classification of stakeholders' groups assisted the definition of their requirements, challenges, and concerns. For the completeness of this document, a detailed table from D1.1 that defines the stakeholders classified in each group is depicted below.

Table 2 - Definition of Stakeholders in the Stakeholders Map

| Stakeholders Group                                                                                                                                                                                                                                                                                               | Roles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Designer</li><li>Project Manager</li><li>Architect</li></ul>                                                                                                                                                                                                                                             | The designer has main responsibilities for the design and the consolidation of designs by other designers.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Structural Engineer</li> <li>Survey and data gathering</li> <li>Services Engineer</li> <li>Work controller</li> </ul>                                                                                                                                                                                   | Other designers as like engineers are responsible for the Design discrete and technical subsystems, such as HVAC, structural, electricity, and automation                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Contractor and Subcontractor</li> <li>Data gathering (scanner 3D, inspection, on-site measures, material tests.,)</li> <li>On site worker</li> <li>Cost controller</li> <li>Quality controller</li> <li>Installer</li> <li>Security manager</li> <li>Site manager</li> </ul>                            | The main contractor responsibility for the construction activities.  Sub-contractors work for the main contractor and are responsible the main contractor. Perform small, straightforward and discrete functions, such as painting, ceiling contracting, wallpapering, and floor tiling.                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                  | Residents or neighbours they may express some requirements or requests for the project.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Building owner and/or resident</li> <li>Homeowner</li> <li>Housing associations (as an owner)</li> <li>Resident/Occupants/tenants</li> <li>Property owners (social housing association)</li> <li>Building's manager</li> <li>Building's administrator</li> <li>Facility manager/ Maintenance</li> </ul> | Several configurations can be allowed for the customers, some private, as condominium, building owners or single houses owners and others public, such as social housing organizations, public administrations as building owners etc In the case of social housing the main initiator of the renovation project is the public administrator and the benefit accrues to the community. They are responsible of the final decision maker in the project.  They define the project's purpose and the end user's constraints. They usually |

|                                                                                                                                           | have the most comprehensive knowledge about the property and                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           | understanding of the actions to be carried out.                                                                                                                                                                                                                                                                                                          |
| Public bodies & administration  Council/local authority Security authority Waste manager Fire service Planning authority Health authority | Representatives of local and public authorities supervise the project and may set constraints on its execution of the following: supervision of construction, planning division, fire authority, and health authority. The government takes the lead in terms of formulating and maintaining regulations, polices and monitoring the adherence to these. |
|                                                                                                                                           | They set the standard relating to the delivery of renovation projects.                                                                                                                                                                                                                                                                                   |
| Industrial  Supplier Manufacturer ESCOs                                                                                                   | Material suppliers: Supply material and equipment, such as concrete, windows, furnishings, and research instruments. They can be the same as the manufacturers.  Material manufacturers: they take over                                                                                                                                                  |
|                                                                                                                                           | the manufacturing of Components, elements or materials according to the specifications defined in the Project.                                                                                                                                                                                                                                           |
|                                                                                                                                           | Software developer & external consultant: they support the Designer Team in the design and assessment of the building trough the specific use of tools or software for the purpose required.                                                                                                                                                             |
| <ul> <li>Others</li> <li>Software developer or consultant</li> <li>External certificatory</li> </ul>                                      | The external consultants provide the consultancy advice for the projects on designing, evaluating the cost, technical issues/advice.                                                                                                                                                                                                                     |
| <ul> <li>Funders</li> <li>Education and training on renovation value chain</li> </ul>                                                     | External certificatory is responsible of validating the project regarding different criteria set by the end users (i.e. energy classification). They are able to provide standard labels for the final product or the process.                                                                                                                           |
|                                                                                                                                           | Financial entities: They act as sponsor of<br>the project, funding the budget. They<br>usually have no requirements or personal<br>interest on the project                                                                                                                                                                                               |

In the sub-sections below there is a brief presentation of the concerns of the stakeholders depending on the group they belong to. This analysis is based on the surveys performed on the D1.1.

#### 3.1 Designers Stakeholders' Concerns

According to survey analysis, the key concerns for designers are the reduction of project development time and the accurate data gathering of the existing building. Moreover, designers should concern about the integration of requests and management of complaints from residents. Finally, other key requirements of designers are the justification of the decision making, the easy replication, the accurate prediction for the performance of the building and establishment a degree of interaction between the occupant and the building.

#### 3.2 Contractors and Subcontractors Stakeholders' Concerns

According to the survey analysis, the key concerns for contractors and subcontractors are the reduction of accidents in the workspace and the improvement of the company's reputation. Following, the main economic concern for contractors and subcontractors is the reduction of energy consumption.

#### 3.3 Public bodies and administration Stakeholders' Concerns

As reported by the surveys for the public bodies and administration, their key concerns are the energy savings and reductions of CO<sub>2</sub> and other pollutant emissions. Moreover, another key concern of public bodies and administration is the reduction of accidents on site.

#### 3.4 Building Owner and/or Resident Stakeholders' Concerns

Based on the survey analysis of the D1.1, the concerns of this group of stakeholders are divided in three categories namely environmental, economic and health, comfort, and safety. Firstly, as regard to the environmental category, the key concerns are the reduction energy consumption and total CO2 and other pollutants emissions. Secondly, the key economic concerns for owners or residents are also the reduction of the technology maintenance cost and length of the payback time. Finally, when it comes to health, comfort, and safety concerns, the most important are the improvement of thermal comfort and air quality and no need for the owner or the resident to leave the building during the works.

#### 3.5 Industrial Stakeholders' Concerns

According to the survey analysis for the industrial stakeholders, their prime concern is the easy interaction with the contractors and the designers. Other key concerns for the industrial stakeholders are the reduction of cost and construction time as well as the integration of requests from residents and the validation of standards compliance.

#### 3.6 Other Stakeholders' Concerns

Based on the survey analysis for the other stakeholders, their key concerns are the reduction of cost, delivery time and CO2 and other pollutant emissions. Other key concern for this group of stakeholders is the access to financial subsidies.

In Table 3, the correspondence between the main components and groups of stakeholders is presented based on the requirements that arose from the surveys' analysis that are presented in D1.1.

Table 3 - Definition of the components used by the different stakeholders

| Stakeholders Group             | Main Concerns                                                                                                                                                                                                                                                                                                |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Designer                       | <ul> <li>RINNO Planning &amp; Design         Assistant (RPDA)</li> <li>RINNO Retrofitting Manager         (RRM)</li> <li>Building Lifecycle Renovation         Manager (BLRM)</li> <li>RINNO Operational Interface         with Augmented Intelligence</li> </ul>                                            |  |  |
| Contractor and Subcontractor   | <ul> <li>RINNO Retrofitting Manager (RRM)</li> <li>Renovation Workflow &amp; Transactions Manager (RWTM)</li> <li>RINNO Operational Interface with Augmented Intelligence</li> <li>Multi-Sensorial Network</li> <li>Middleware Infrastructure</li> <li>IoT Sensorial Network &amp; Control System</li> </ul> |  |  |
| Building owner and/or resident | <ul> <li>Middleware Infrastructure</li> <li>RINNO Operational Interface<br/>with Augmented Intelligence</li> </ul>                                                                                                                                                                                           |  |  |
| Public bodies & administration | <ul> <li>RINNO Planning &amp; Design         Assistant (RPDA)     </li> <li>RINNO Retrofitting Manager         (RRM)     </li> <li>RINNO Operational Interface         with Augmented Intelligence     </li> </ul>                                                                                           |  |  |
| Industrial                     | <ul> <li>RINNO Renovation Repository (RRR)</li> <li>Renovation Workflow &amp; Transactions Manager (RWTM)</li> <li>RINNO Retrofitting Manager (RRM)</li> <li>RINNO Operational Interface with Augmented Intelligence</li> </ul>                                                                              |  |  |
| Others                         | <ul> <li>RINNO Planning &amp; Design         Assistant (RPDA)     </li> <li>RINNO Operational Interface         with Augmented Intelligence     </li> </ul>                                                                                                                                                  |  |  |

## 4 Conceptual Architecture

This chapter describes the conceptual architecture of the RINNO Suite. It provides a high-level view of the technical architecture of the system, along with its renovation workflow. Furthermore, this chapter organizes the system in four layers, namely

28

Interaction, Services, Physical and Horizontal Layer, depending on the functionality of its individual components:

- Interaction Layer: It contains all the necessary modules needed for the interaction/ communication between users/ stakeholders and the system as well as the communication among the system's modules. It also provides AR/VR interfaces, a Marketplace platform for commercial uses and a Social Collaboration Platform for the optimal cooperation of the involved actors of the project.
- Services Layer: This layer provides the envisioned services which assists users to
  make decision during the project operation, as well as to improve their
  everyday life. It consists of all the necessary components like planning and
  renovation assistance, optimization, and industrialization of the renovation
  process as well as creation of an AR environment among others.
- Physical Layer: This layer contains all the physical devices installed in the buildings, which provides the necessary information from the physical world (buildings) to the RINNO Suite. Moreover, it contains the necessary renovation solutions through the Renovation Repository.
- **Horizontal Layer**: It is responsible for the interaction of the rest layers on its basis. More specifically, it contains tools to ensure the secure transactions between the users and the proper functioning of the renovation workflow. It also provides the **Middleware** that constitutes the glue of the system.

The conceptual architecture of the RINNO Suite, organized in four layers as mentioned above, along with the workflow of the renovation is depicted in the Figure below.

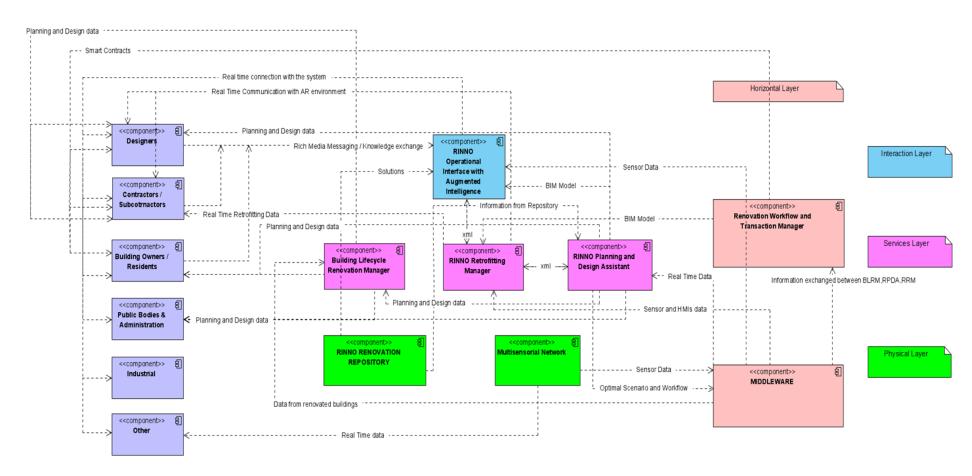
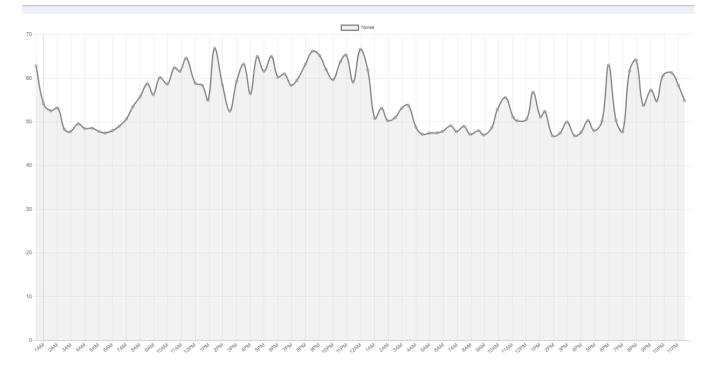



Figure 3 - Conceptual Architecture organized in layers

#### 4.1 RINNO Interaction Layer

#### 4.1.1 RINNO Operational Interface with Augmented Intelligence

RINNO Operational Interface with Augmented Intelligence contains a central dashboard, a Building Monitoring System, Human Machines Interfaces and the RINNO Marketplace & Social Collaboration Platform (RMCP). Dashboard consists of AR/VR interfaces as well as customized dashboard for each user based on the information is interested in. The Collaboration platform supports real time assistance to workers, communication between stakeholders, events and social networking. Designers, Contractors and Building owners or tenants exchange rich media messages through the collaboration platform of this component. They also share with this component their knowledge. Rinno Renovation Repository provides the Operational Interface with solutions and gets crowd populated with third parties technologies from the marketplace of this key component. Rinno Planning and Designing Assistant also provides the Operational Interface with the BIM model. Finally, RINNO Operational Interface with Augmented Intelligence gets sensor data collected at the buildings from the Middleware.


#### 4.2 RINNO Services Layer

#### 4.2.1 RINNO Building Lifecycle Renovation Manager

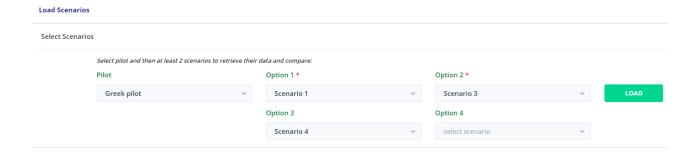
The Building Lifecycle Renovation Manager (BLRM) followed the project in all its phases. In particular, it integrated the Intelligent Renovation Assistant. The Assistant integrates a renovation validation and benchmarking tool. The Assistant gathers renovation data from the buildings from the Middleware infrastructure and also gets planning and design data from the **Planning and Design Assistant** in order to optimize available renovation scenarios. In that way Renovation Manager generates the logbook and the roadmap of the renovation in order to allow key stakeholders to monitor and validate the renovation process. Renovation Manager also assists Designers and Contractors to recognize any performance gap between actual and design data and also achieves visual and thermal comfort for the Owners or Residents of the building after the end of renovation. For that reason, our system as articulated in D5.9, deploys the **Building Performance Dashboard** with real data from the building's sensors and devices via the IoT Middleware. This real data is complemented by theoretical data obtained from Key Performance Indicators (KPIs). This combination allows project stakeholders to make direct comparisons between the actual performance of the renovated building and the expected or conceptual performance, giving them a clear picture of the renovation's true value. Below, there is an example from **Building Performance Dashboard** juxtaposing the theoretical Key Performance Indicators (KPIs) with the actual sensor measurements. Values displayed in green signify that they fall within acceptable limits.

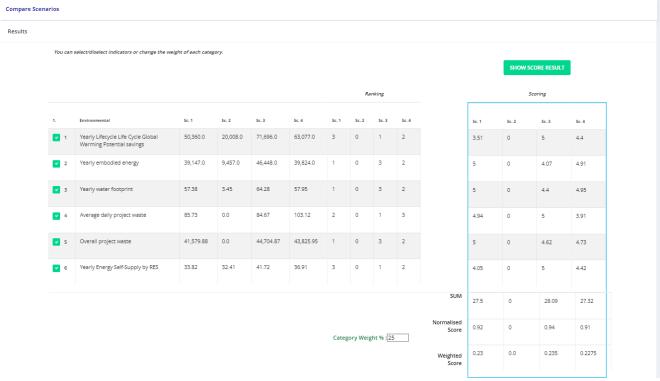
| Whole Building C                             | onsumption for Polish F | Pilot  |          |  |  |  |
|----------------------------------------------|-------------------------|--------|----------|--|--|--|
|                                              |                         | CERTH  |          |  |  |  |
| Energy parameters (kWh)                      | Baseline                | SC4    | Actual   |  |  |  |
| Wood/coal demand for heating                 | 128.039                 | 0      |          |  |  |  |
| Natural gas demand for heating               | 0                       | 19.178 |          |  |  |  |
| Wood/coal demand for DHW                     | 25.104                  | 0      |          |  |  |  |
| Natural gas for DHW                          | 0                       | 13.295 |          |  |  |  |
| Total Natural Gas Demand                     |                         | 32.473 |          |  |  |  |
| Electricity demand for appliances/lighting   | 10.323                  | 10.042 |          |  |  |  |
| Total Electricity Demand                     | 10.323                  | 10.042 | 6,286.17 |  |  |  |
| Total PV production                          | 0                       | 8.821  |          |  |  |  |
| Total electricity demand with PV included    | 10.323                  | 1.221  |          |  |  |  |
| Primar                                       | y energy analysis       | ·      | ·        |  |  |  |
| Primary energy production from the PV        | 0                       | 26.463 |          |  |  |  |
| Total primary energy demand                  | 199.426                 | 65.846 |          |  |  |  |
| Total primary energy demand with PV included | 199.426                 | 39.383 |          |  |  |  |

Additionally, information collected during the design phase, along with on-site data gathered through the **Middleware**, is used to create two essential tools: the Building Renovation Passport and the Renovation Logbook. The Building Renovation Passport serves as a dynamic roadmap for the renovation, providing tailored solutions for each building. On the other hand, the Renovation Logbook acts as a comprehensive repository of building-related data and incorporates technology for managing and monitoring real-time parameters and historical data. The diagram below from **Building Performance Dashboard** provides historical measurements recorded within a specific apartment during a defined timeframe. These measurements are essential for assessing the building's performance, informing maintenance decisions, and ensuring data-driven planning and analysis.

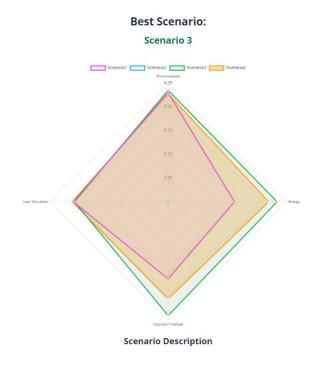


#### 4.2.2 RINNO Retrofitting Manager


The **Retrofitting Manager** combines a group of modules to make the retrofitting process easier for the stakeholders of the system by reducing the operation time and the disturbance of occupants. Workflow Manager provides Retrofitting Manager with the BIM model. Additionally, an on-the-job AR environment is generated, in order to promote real time communication between engineers and constructors. Retrofitting Manager assists designers, contractors and subcontractors, public bodies and administrators of the system with optimization, industrialization and monitoring of the renovation process. Finally, Retrofitting Manager exchanges data (scenarios, services, warning, notifications etc.) with other key components in xml form. The Retrofitting Manager streamlines the retrofitting process, enhancing efficiency and minimizing occupant disruption. It receives the BIM model from the Workflow Manager and creates an augmented reality (AR) environment for real-time communication between engineers and builders. It supports designers, contractors, public authorities, and system administrators with optimization, industrialization, and monitoring of the renovation process, while exchanging data in XML format with other key components. Additionally, during retrofitting, key performance indicators (KPIs) from the optimal scenario, acquired via the TEA tool, are input into the E-Logistics tool to generate a work schedule displayed on the user interface. Construction workers can request schedule optimizations through RRM, which obtains job specifications and user constraints from Teamoty or JSO tools. These inputs guide the recommendation engine and Via-Process Tool, producing a tailored work schedule viewable on the user interface. AR tutorials for construction workers are accessible online, also populating the RINNO Marketplace with innovative technologies and renovation solutions from RRR. Upon completion of a renovation action, the AR model of the building is updated via the E-cockpit tool, which provides real-time progress reports for site workers.


33

#### 4.2.3 RINNO Planning and Design Assistant


Planning and Design Assistant is a key component of the system that helps owners or tenants, designers and contractors to make decisions in the planning/designing phase of the renovation. The Assistant is responsible for capturing the virtual model of the building and for the generation of the renovation scenarios. RPDA also uses its modules to simulate and evaluate all the available renovation scenarios and then to select the more attractive between them. The primary tools employed prior to the renovation that are the Assistant, include Digital Twin, INTEMA building, Verify, TEA Tool, and DSS from WP3. These tools serve a dual purpose, enabling both simulation and planning/designing activities. Initial data regarding key building characteristics, such as location, geometry, and renovation materials, are essential inputs for Digital Twin, INTEMA building, and Verify. This data facilitates the generation of scenarios, KPIs, and initial energy consumption estimations. Renovation scenarios, Energy KPIs, and time-series data, along with the building's BIM files, are then utilized by Verify and TEA Tool to generate a comprehensive set of KPIs for each renovation scenario.

Notably, **DSS** plays a pivotal role in RINNO Suite by selecting the optimal renovation scenario. The example below is from the **DSS**, where the user can select the scenarios he want to display. After that DSS takes a collection of KPIs as input for each scenario, filling the tables Environmental, Energy, Cost and Financial and User Disruption and employs its innovative algorithm to rank scenarios, ultimately identifying the best option.





And after that it generates the best option as we can see in the picture below.



#### 4.3 RINNO Physical Layer

#### 4.3.1 RINNO Renovation Repository

The RINNO Renovation Repository (RRR) is developed to offer access to novel building innovative and energy renovation technologies, along with suitable business models.

Additionally, technologies available in the RINNO Renovation Repository are published to the Marketplace, and online contracts are used to secure the transactions of technologies in the RRR, ensuring a seamless and secure process for purchasing these technologies.

#### 4.3.2 RINNO Multi-Sensorial Network

**Multi-Sensorial Network** includes the physical devices installed in the buildings, such as smart sensors and monitoring equipment for both energy and environmental conditions. More specifically, it consists of heterogeneous devices that allow the interaction between the physical world (Buildings) and the RINNO Suite. The Multi-Sensorial Network encompasses a wide array of physical devices strategically deployed within buildings, including smart sensors and monitoring equipment designed to capture data related to energy consumption and environmental conditions. This network comprises a diverse set of devices that facilitate seamless interaction between the physical environment (Buildings) and the RINNO Suite. One notable feature of this interaction is its visibility on the RINNO Suite. Users can access a dashboard that presents real-time data from these sensors, offering a clear overview of various parameters. Additionally, a 3D viewer is available, allowing users to explore the physical space and gain insights into sensor readings. Within the 3D viewer, users can select specific sensors of interest and view their real-time values, as

#### 4.4 RINNO Horizontal Layer

#### 4.4.1 Middleware

**As mentioned above, Middleware** serves as the essential binding element within the system, providing not only the crucial connectivity but also enabling historical and real-time exposure of values and data, making it a versatile bridge for sharing vital data.

#### 4.4.2 RINNO Renovation Workflow and Transaction Manager

well as discern whether the sensors are currently active or inactive.

The **Renovation Workflow Manager** assumes the crucial role of overseeing the entire lifecycle of building renovation, ensuring smooth interaction and interoperability among the components within the services layer, including RPDA, RRM, and BLRM. Furthermore, the Transaction Manager offers next generation, blockchain-enabled applications, designed to establish secure and automated contracts between Owners or Residents and other project stakeholders. In a more specific context, the Transaction Manager converts human-readable conventional contracts into smart contracts. For a comprehensive understanding of these processes, please refer to D5.9 for detailed information.

# 5 Functional View

In the current chapter, the overall functional architecture of the RINNO Suite is presented along with a short description of its main components, modules, and submodules along with their functionalities and interactions.

## 5.1 RINNO Functional Architecture

The overall functional viewpoint of architecture is depicted in the figure below.

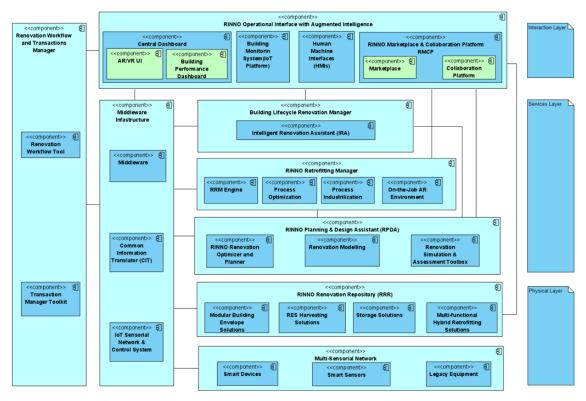



Figure 4 - Overall Functional View

# 5.2 Overview of the main components, modules, and sub-modules

This section presents the key components, modules, and sub-modules of the RINNO Suite and their main functionalities, and interactions.

# 5.2.1 RINNO Operational Interface with Augmented Intelligence

# 5.2.1.1 Social Collaboration Platform

This sub-module is part of RINNO Operational Interface with Augmented Intelligence component. It creates a knowledge base that is be used for better control and coordination of the renovation workflow and real time training of workers ("on-the-job" assistance). Communication among workers, managers, engineers and building owners are available through an application (also in the form of a Mobile App). In addition, best practices for the renovation process and best practices and suggestions for energy efficiency for tenants can be provided.

Third parties have the opportunity to include their technologies, ideas and best practices through this platform that can feed the knowledge base.

Finally, events and social networking are supported for a better-connected work environment.

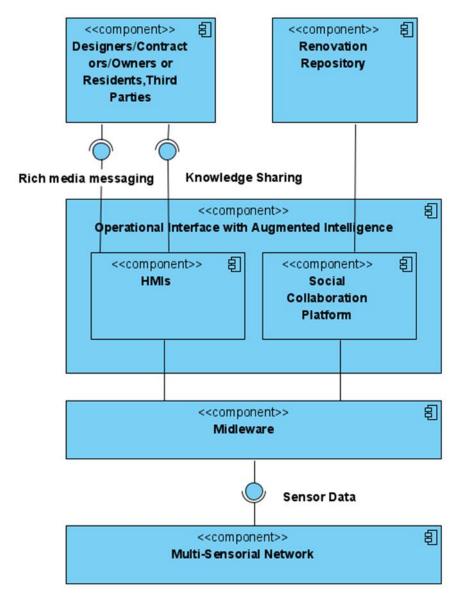



Figure 5 - Social Collaboration platform's Component Diagram

The following tables explains in detail the main interfaces and their interconnection with the other components.

Table 4 - Social Collaboration Platform - Inputs

| Social Collaboration Platform         | Input Description                                                                                                                                                                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rich media messaging                  | Information, knowledge, and experiences are exchanged (through the platform or through a Mobile App) among workers, managers, engineers and building owners. Ideas, technologies, and best practices, from third parties are also transferred data. |
| On-Site Information                   | Sharing information on-site, during the renovation activities                                                                                                                                                                                       |
| Information during real-time training | Data collected from Smart phones and tablets (location-based services) and smart helmets (further information)                                                                                                                                      |

Table 5 - Social Collaboration Platform - Outputs

| Social Collaboration Platform                      | Output Description                                                                                                                                                                                                              |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Social Collaboration-Knowledge<br>Sharing platform | Communication among workers, managers, engineers and building owners is available. Tenants are supported with best practices and suggestions for energy efficiency. Also, best practices in renovation activities are provided. |
| Suggestions/ Solutions to support workers          | Direct communication tools to assist workers in the planning, scheduling, coordination, and optimization of work effort as well as real time training, significantly supports the renovation effectiveness.                     |

# 5.2.1.2 Marketplace

This sub-module is part of **RINNO Operational Interface with Augmented Intelligence** component, along with the Collaboration Platform they form the RINNO Marketplace and Social Collaboration Platform. RINNO Marketplace aims to capitalize the solutions from the **RINNO Renovation Repository** (RRR) as well as RINNO ICT tools. Moreover, 3<sup>rd</sup> parties can crowd-populate the RRR, through the RINNO Marketplace, to optimize each renovation solution with the support of the **RINNO Planning and Design Assistant** and the **RINNO Retrofitting Manager**. In addition, the technical tools of the RINNO Suite feeds the Marketplace with inputs. That way ensures that the RINNO Suite will not be outdated and will continuously provide updated optimized solutions and 3rd parties technologies to the **RINNO Renovation Repository**. The Marketplace sub-module introduces a digital component that allows 3rd party technologies to be included to the RRR and offers the ability to increase sales of not only RINNO technologies, but also 3rd party technologies along with the ICT products that RINNO Suite provides.

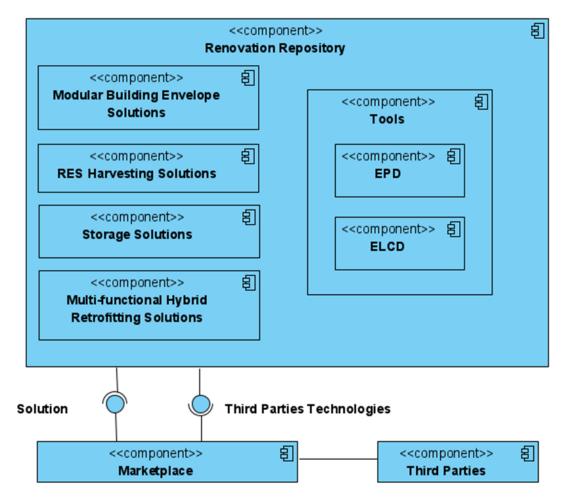



Figure 6 - Marketplace Component Diagram

Table 6 - Marketplace - Inputs

| Marketplace                                              | Inputs Description                                                                                                                                                                                        |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solutions provided by the RINNO<br>Renovation Repository | The solutions of the Repository include:  • Envelope retrofitting solutions • Energy systems (RES harvesting, hybrid & Storage Solutions) • Retrofitting process improvement techniques • Business Models |

Table 7 - Marketplace - Outputs

| Marketplace                 | Outputs Description                                                                                                                                                                                                                                                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Third parties' technologies | RINNO Renovation Repository is a digital component that is presented through the Marketplace where the third parties can also facilitate its natural expansion and ensure that both novel and conventional solutions are included and can be used for optimising each renovation case. |

## 5.2.1.3 Building Monitoring System (IoT Platform)

The Building Monitoring System (BMS) is a module of RINNO Operational Interface with Augmented Intelligence component. BMS connects in-use performance data with BIM context and provides usable advice to property owners and tenants. This module can take BIM models in the form of Industry Foundation Classes (IFC) and enables users to link sensors and other data, such as tenant profile data to spaces within buildings. BMS relates to the IoT sensorial middleware to understand the behavioural profile of users. BMS monitors any IoT device. It can receive information from any kind of device installed in the buildings under any kind of protocol. Finally, depending on the type of IoT sensors installed, the IoT Platform can generate different functionalities about the renovation process (e.g., the monitoring of parameters, advancements...) and the operation of the building.

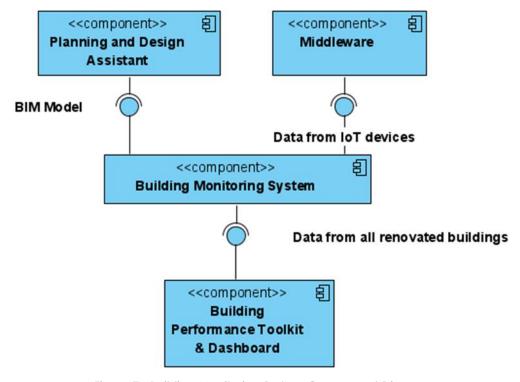



Figure 7 - Building Monitoring System Component Diagram

Table 8 - Building Monitoring System – Inputs

| Building Monitoring System             | Inputs Description                                                                                                                                                                                          |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIM models                             | The Building Monitoring System gets a BIM model in the form of Industry Foundation Classes (IFC).                                                                                                           |
| Data from IoT devices in the buildings | The Building Monitoring System gets information from any kind of device installed in the buildings (e.g. energy, environmental meters) under any kind of protocol (e.g. TCP/IP, Bluetooth, ZigBee, Z-Wave). |

Table 9 - Building Monitoring System - Outputs

| Building Monitoring System                                                                  | Inputs Description                                                                                                                                              |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data from all available (renovated) buildings during the phase of renovation and operation. | The Building Monitoring System can extract useful information such as e.g., short-term energy consumption predictions, data correlations, comparisons, reports. |

# 5.2.1.4 Central Dashboard

# 5.2.1.4.1 Building Performance Toolkit & Dashboard

Building Performance Toolkit & Dashboard is a sub-module of **RINNO Operational Interface with Augmented Intelligence**. Along with AR User Interface they form the Central Dashboard of Operational Interface. This toolkit allows users to create personalized dashboards based on the information they are interested in. The dashboard enables the facility manager and the occupants to monitor building operations and decide optimal strategies. Users also are able to set up custom alerts in order to receive notifications under certain circumstances (e.g., humidity). This submodule utilizes visual and data analytics techniques for the analysis of the data through a spatiotemporal analysis and correlations between building parameters and various KPIs at different domains (e.g., geometric, energy consumption, usage, etc.). The dashboard is fed with data through the Building Monitoring System (i.e., IoT platform).

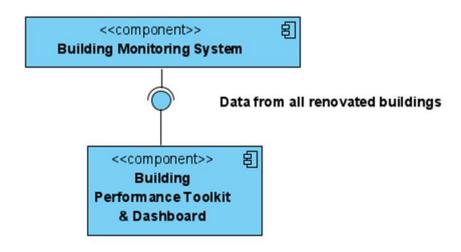



Figure 8 - Building Performance Toolkit & Dashboard Components Diagram

Table 10 - Building Performance Toolkit & Dashboard - Inputs

| Building Performance Toolkit & Dashboard | Inputs Description                       |
|------------------------------------------|------------------------------------------|
| Data from all available (renovated)      | Useful information such as e.g., short-  |
| buildings during the phase of            | term energy consumption predictions,     |
| renovation and operation.                | data correlations, comparisons, reports. |

#### 5.2.1.4.2 AR User Interfaces (UIs)

This Section is referred to the User Interfaces (UIs), which is delivered by the AR on-the-job training toolkit (Section 3.2.3.1).

### 5.2.2 RINNO Planning & Design Assistant (RPDA)

### 5.2.2.1 Renovation Modelling

## 5.2.2.1.1 Building Capturing and Mapping

This sub-module belongs to the **RINNO Planning and Design Assistant** component. RINNO Suite captures and aligns the basic existing geometrical information of the building features under renovation, while considering any required structural repairs, leading to the necessary BIM. The building-as-is capturing was firstly achieved via a questionnaire, which was circulated to the demo sites. Then both conventional (accelerometers, gyroscopes, GPS), and very innovative devices (Ars's scanners and drones) were also deployed for the building-as-is capturing and reconstructing the 3D geometry of the existing buildings and model them in BIM.

On top of these devices, RINNO project delivers a multiplatform software technology allowing:

 immersive environment for additive/corrective scanning/reconstructing of existing building data with design drafting/review and BoQ (Bill of Quantities) functionalities, • the sharing of building data among other stakeholders (located locally or remotely).

These conventional and innovative devices gather onsite data by creating a cloud of points that forms the building shape. On the other hand, some algorithms have been developed to map these points together and create a BIM model. This creation allowed us to differentiate between the main components of the envelope: windows, doors, roof, concrete, etc.

The output of this task is an IFC BIM model. The result is connected to the Renovation Digital Twin and the Renovation Assessment Toolbox.

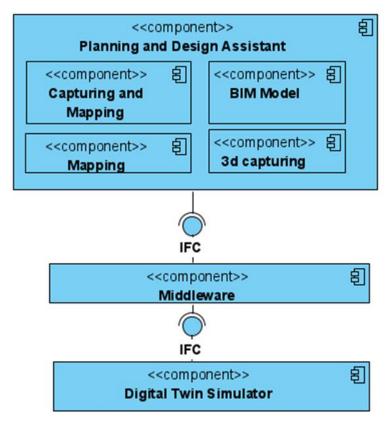



Figure 9 - Building Capturing and Mapping Component Diagram

The following table explains in detail the main interfaces, and their interconnection with this component.

Table 11 - Building Capturing and Mapping - Inputs

| Building Capturing and Mapping | Inputs Description                                                                                                                                                                                                                                                      |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cloud of points                | Drones are often used to collect a series of RGB images which can be later processed on a computer vision algorithm platform such as on AgiSoft Photoscan, Pix4D or DroneDeploy to create RGB point clouds from where distances and volumetric estimations can be made. |

44

Table 12 - Building Capturing and Mapping - Outputs

| (Καλύτερα θα είναι: Building Capturing and Mapping) | Output Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFC BIM Model                                       | The Industry Foundation Classes (IFC) data model is intended to describe architectural, building and construction industry data. It is a platform neutral, open file format specification that is not controlled by a single vendor or group of vendors. It is an object-based file format with a data model developed by building SMART (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering, and construction (AEC) industry, and is a commonly used collaboration format in Building information modelling (BIM) based projects. |

#### 5.2.2.1.2 Digital-Twin

Renovation buildings Digital-Twin sub module subject to energy efficient renovation plan, to make the renovation offer more attractive and less time-consuming to all relevant stakeholders by assessing different renovation solutions with an automatized building modelling approach (Machine Learning based). Its primary advantage over other approaches lies on being simpler in terms of formulation and application compared to conventional modelling approaches, without the requirement of dedicated experts' involvement.

The VTT Digital-Twin model is created based on a mix of existing mathematical & physical model of the building and info pulled from extensive databases, where either aggregated data (e.g., energy bills) or historical data (delivered by IoT middleware) are stored. The Digital-Twin building model is trained based on a) either hourly measurement data (indoor temperature, energy consumption of single consumption points – heating/cooling elements and/or electrical equipment (ventilation fans, home/office appliances) or b) building consumption point, building automation data, IoT sensors data and weather data) and, if available, geometry of the building (from CAD data file) and thermal properties of building envelope elements.

This module success is interconnected with the interaction with multiple components as depicted in the scheme below.

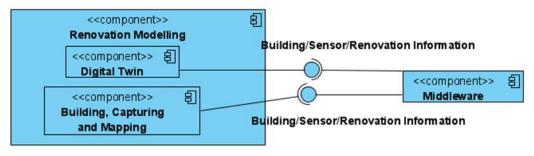



Figure 10 - Renovation Digital-Twin Component Diagram

This tool is part of the RINNO Renovation Modelling module. The following table explains in detail the main interfaces, and their interconnection with Renovation Digital-Twin sub-module.

Table 13 - Renovation Digital-Twin - Inputs

| Renovation Digital-Twin – Tool | Inputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building sensor information    | <ul><li>IoT sensor data</li><li>BEMS data</li><li>Weather data</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Basic building information     | <ul> <li>Country</li> <li>Building type</li> <li>Construction year</li> <li>Weather data</li> <li>Cooling set point</li> <li>Heating set point.</li> <li>Space heating/cooling type</li> <li>Conditioned floor area</li> <li>Number of floors</li> <li>Floor height</li> <li>Number of residents</li> </ul>                                                                                                                                                                                                                                   |
| Renovation options             | <ul> <li>Measures to improve:</li> <li>the building airtightness</li> <li>the thermal insulation of the windows/outside walls/base floor/roof</li> <li>the solar shading of the windows.</li> <li>the mechanical ventilation system by adding heat recovery for the ventilation system</li> <li>the energy efficiency of the hot water system</li> <li>energy efficiency and/or CO<sub>2</sub>-emission efficiency of the heating/cooling system</li> <li>the space heating efficiency by adding an auxiliary space heating system</li> </ul> |

46

Table 14 - Renovation Digital-Twin - Outputs

| Renovation Digital-Twin - Tool | Output Description                      |
|--------------------------------|-----------------------------------------|
| Space heating and hot water    | (Before, After and Savings information) |
| Appliance electricity          | (Before, After and Savings information) |
| Space cooling                  | (Before, After and Savings information) |
| Carbon footprint               | (Before, After and Savings information) |
| Energy cost                    | (Before, After and Savings information) |
| Investment cost                | (Before, After and Savings information) |
| Payback time                   | (Before, After and Savings information) |

# 5.2.2.2 Renovation Simulation & Assessment tool

## 5.2.2.2.1 Energy Assessment

This submodule belongs to the RINNO Simulation and Assessment toolbox module which in turn belongs to the RINNO Planning and Design Assistant component. The Energy Assessment tool (subtask 3.3.1) assesses the energy performance of the various renovation scenarios considering the specifications of the building envelope, the various thermal zones, the building systems, Renewable Energy Systems (RES) production systems, weather data and user behaviour. The dynamic energy demand (thermal and electrical) of the buildings wasinvestigated along with the RES production, potential and own-use utilization through assessing possible RES harvesting synergies combined with storage solutions.

The Energy Assessment tool receives input on the building geometry, the thermophysical properties of the building elements as well as the various combinations of building and RES systems for all potential renovation scenarios through the Renovation Modelling Toolkit (BIM, Digital Twin) (T3.1, T3.2). Additional input for the technologies is received from the RINNO Renovation Repository component (WP2).

The output is used by the RINNO Renovation Optimizer and Planner (T3.4) to determine the optimum renovation scenario. In addition, the output of the Energy Assessment tool partly feeds the Environmental, Cost and Social Assessment tool (subtask 3.3.1).

This component success is interconnected with the interaction with multiple components as depicted in the schema below.

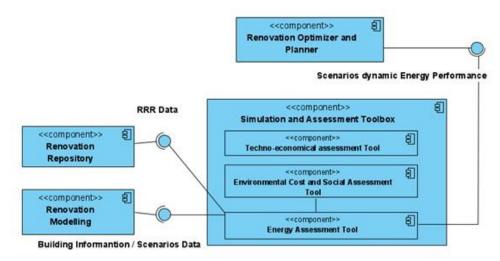



Figure 11 - Energy Assessment tool Component Diagram

The following table explains in detail the main interfaces, and their interconnection with the Energy Assessment tool component.

Table 15 - Energy Assessment tool - Inputs

| Energy Assessment tool                                                                         | Inputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building information from the<br>Renovation Modelling toolkit (BIM,<br>Digital Twin)           | The Energy Assessment tool receives inputs on the building geometry, the thermophysical properties of the building elements as well as the existing building systems and RES systems that produce thermal or electrical energy from the Renovation modelling toolkit so that the dynamic energy performance (demand and production) of the existing building are assessed. Furthermore, the proposed renovation scenarios, considering the various technological solutions and their integrations and synergies, are also provided to determine their energy performance |
| Information and data on the<br>technologies used from the RINNO<br>Renovation Repository (RRR) | The specifications of the technologies used on a renovation scenario were taken by the RINNO Renovation Repository. These specifications (such as power, capacity factor, maximum and minimal voltage and current etc. for an electricity production system) are required for the modelling the technologies and their integration on the buildings as well as the energy assessment of the various scenarios                                                                                                                                                            |

Table 16 - Energy Assessment tool - Component outputs

| Energy Assessment tool                                                     | Outputs Description                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy performance data to the RINNO<br>Optimizer and Planner              | Results of the analysis on the energy assessment of the various scenarios were fed to the RINNO Renovation Optimizer and Planner to rank them in terms of energy performance based on appropriate KPIs.                       |
| Operational data for the Environmental,<br>Cost and Social assessment tool | Specific output data (such as the forecasted power production for RES systems etc.) were fed to the Environmental, Cost and Social assessment tool (3.3.2) to conduct the LCA/LCC/s-LCA analysis of the renovation scenarios. |

# 5.2.2.2.2 Environmental, Cost and Social Assessment

This sub-module belongs to the RINNO Simulation and Assessment toolbox module which in turn belongs to the **RINNO Planning and Design Assistant** component. The Environmental, Cost and Social Assessment tool conducts the analysis of the proposed renovation scenarios of each demo site regarding:

- The Lifecycle Assessment of the renovation scenarios, where the evaluation of parameters such as:
  - a) embodied energy of the renovation components
  - b) primary energy savings
  - c) CO<sub>2</sub> emissions per kWh produced
  - d) Lifetime GHG emissions
  - e) Water footprint of the renovation measures.
- The Lifecycle Cost assessment of the renovation scenarios where the direct, indirect, internal, and external costs incurred were evaluated for all stages during a project's lifetime (capital, operation and maintenance and end-oflife costs).
- The assessment of social life cycle assessment (S-LCA) aspects concerning the residents' welfare during the building renovation process.

The evaluation of the renovation scenarios was conducted based on the KPIs defined in T1.4. The tool receives input from the Energy Assessment tool regarding some operational parameters of the renovation scenarios. Additional input for the technologies was received from the **RINNO Renovation Repository** component (WP2).

The output is fed into the RINNO Renovation Optimizer and Planner (T3.4) to determine the optimum renovation scenario. In addition, the output of the LCC assessment assists the business modelling tasks in WP7 that are customer focused guided by circular renovation principles.

This component success is interconnected with the interaction with multiple components as depicted in the schema below.

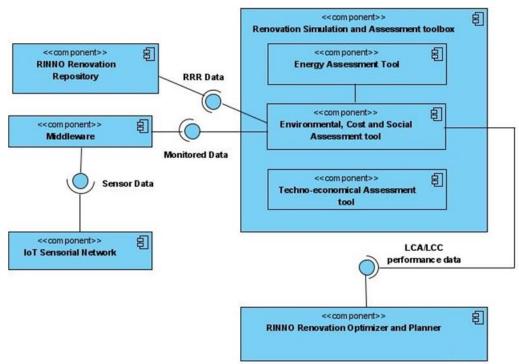



Figure 12 - Environmental, Cost and Social Assessment tool Component Diagram

The following table explains in detail the main interfaces, and their interconnection with the Environmental, Cost and Social Assessment tool component.

Table 17 - Environmental, Cost and Social Assessment tool - Inputs

| Environmental, Cost and Social Assessment tool      | Inputs Description                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operational data from the Energy<br>Assessment tool | The Environmental, Cost and Social Assessment tool receives inputs on certain operational parameters (such as capacity and energy production of RES systems, building energy consumption etc.) from the output of the Energy Assessment tool. This input is required to estimate the environmental impact as well as the cost during the operational phase of the renovated building. |
| RINNO Renovation Repository (RRR)                   | Specifications of the technologies used on a renovation scenario were taken by the RINNO Renovation Repository. These specifications are required for determining the environmental impact and cost of the technologies and their integration on the buildings throughout the lifecycle of the building.                                                                              |
| Building Monitored Data                             | The tool receives monitored data from the building regarding the indoor conditions of the buildings. Such data                                                                                                                                                                                                                                                                        |

| are used by the s-LCA module to determine the impact of the renovation       |
|------------------------------------------------------------------------------|
| on the well-being of the occupants through the calculation of suitable KPIs. |
|                                                                              |
| In addition, up-to-date information on                                       |
| the energy performance was received                                          |
| by the LCA/LCC assessment tool                                               |
| (VERIFY) from the monitoring sensors                                         |
| through the middleware (if available)                                        |
| which leads to increased accuracy of                                         |
| the environmental and lifecycle cost                                         |
| analysis.                                                                    |

Table 18 - Environmental, Cost and Social Assessment tool – Outputs

| Environmental, Cost and Social Assessment tool                                              | Outputs Description                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental, and Lifecycle Cost<br>performance data to the RINNO<br>Optimizer and Planner | Results of the analysis on the environmental, and lifecycle cost assessment of the various scenarios are fed to the RINNO Renovation Optimizer and Planner to rank them based on appropriate KPIs.                                                              |
| Social Impact data                                                                          | Monitored data for the indoor conditions of the buildings (CO2, temperature and humidity) are used for the calculation of suitable indicators (time outside thermal comfort conditions, etc.) as part of the assessment for the social impact of the renovation |

#### 5.2.2.3 Techno-economical Assessment

This submodule belongs to the RINNO Simulation and Assessment toolbox module which in turn belongs to the RINNO Planning and Design Assistant component. The main aim of techno-economical assessment (TEA) tool is to evaluate, for each renovation scenarios considered, the impact of the works in terms of user disturbance and waste production. With reference to waste production, the logistic implications (transport and site) are also considered.

Specifically, the TEA tool consists of two different parts:

- Activities configuration module: to identify the worksite scenarios that minimize time, costs, and disturbance to users.
- Waste Management Module: it allows to identify quantities and logistical needs for different waste categories according to the types of waste produced.

The tool receives inputs from the building geometry, construction phases, materials, separation degree of materials of both the existing building and the related refurbishment scenarios to be assessed, through the Renovation Modelling Toolkit (BIM, Digital Twin) (T3.1, T3.2). Additional inputs for the technologies are received from the RINNO Renovation Repository (WP2) about product innovations.

The output is fed into the RINNO Renovation Optimizer and Planner (T3.4) in order to determine the optimum renovation scenario as well as the optimal sequence of works. In detail, the TEA tool calculates the impact on different users in terms of interruption of services, indoor environmental quality (acoustic, light, air quality), accessibility to areas and promiscuity with workers.

The interconnections and the interfaces of the submodule with other submodules are depicted in figure below.

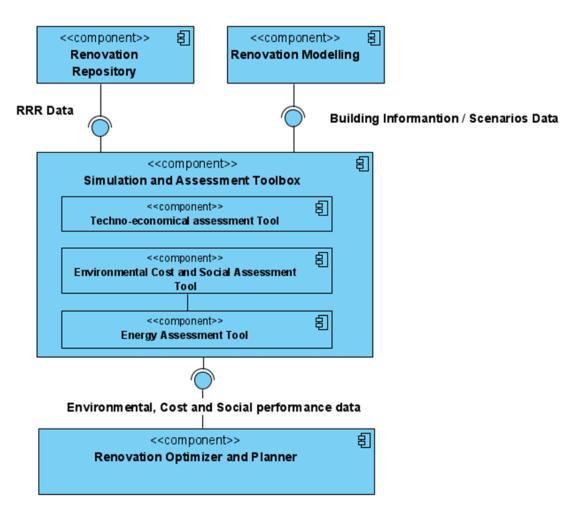



Figure 13 - Techno-economical Assessment Tool Component Diagram

Table 19 - Techno-economical Assessment Tool - Inputs

| Techno-economical Assessment Tool | Inputs Description                    |
|-----------------------------------|---------------------------------------|
| Building information from the     | The Techno-economical Assessment tool |

| Renovation Modelling toolkit (BIM,<br>Digital Twin) | receives input on the building geometry, construction phases, materials, separation degree of materials of both the existing building and the related refurbishment scenarios to be assessed                                                                                                                                       |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RINNO Renovation Repository (RRR)                   | Specifications of the technologies used on a renovation scenario are taken by the RINNO Renovation Repository. Data gathered from the RRR through the Middleware are used in BIM format. These specifications are required to assess cost and impact in terms of user disruption resulting from their integration on the buildings |

Table 20 - Techno-economical Assessment Tool - Outputs

| Techno-economical Assessment Tool                                                                     | Outputs Description                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data on the technoeconomic performance of the renovation scenarios to the RINNO Optimiser and Planner | Renovation scenarios are assessed in terms of user disruption, waste generation and relevant costs in terms of renovation work progress. These results are then fed to the RINNO Renovation Optimizer and Planner to rank them based on appropriate priorities. |

# 5.2.2.3 RINNO Renovation Optimizer and Planner

This module belongs to the **RINNO Planning and Design Assistant** component. The RINNO Renovation Optimizer and Planner determines the optimum renovation scenario and the optimum sequence of interventions. The optimum scenario is selected based on the results of the Energy Assessment tool (3.3.1), the Environmental, Cost and Social Assessment tool (3.3.2) and the Techno-economical assessment tool (3.3.3) and the use of appropriate KPIs defined in T1.4. The optimum sequence of interventions is selected based on KPIs regarding retrofitting time and cost during the renovation and disturbance of occupants and aims at minimizing them.

The module receives inputs from the simulations of the Energy Assessment tool, the Environmental, Cost and Social Assessment tool and the Techno-economical Assessment tool for all potential renovation scenarios (collectively the RINNO simulation and Assessment toolkit). The scenarios that are examined have been produced by considering the status of the building (the renovation modelling toolkit generating the scenarios receives real-time data from the **Multi-sensorial network** through the **Middleware** infrastructure). The evaluation of the scenarios is conducted based on appropriate KPIs defined in T1.4.

The output of the Renovation Optimizer and Planner is fed to the other components related to the construction and monitoring stage of the renovation, namely the RINNO Retrofitting Manager and the Building Lifecycle Renovation Manager through the Renovation Workflow and Transaction Manager.

This component success is interconnected with the interaction with multiple components as depicted in the schema below.

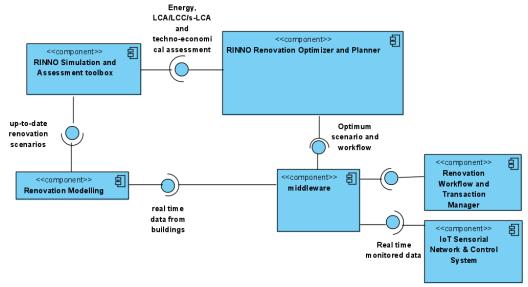



Figure 14 - RINNO Renovation Optimizer and Planner Component Diagram

The following tables explain in detail the main interfaces, and their interconnection with the RINNO Renovation Optimizer and Planner module.

Table 21 - RINNO Renovation Optimizer and Planner - Inputs

| Renovation Optimizer and Planner | Inputs Description                                                                                                                                                                                                                                                   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenarios assessment data        | The RINNO Renovation Optimizer and Planner receives inputs from the RINNO Simulation and Assessment toolkit on the assessment of the proposed renovation scenarios in terms of:                                                                                      |
|                                  | <ul> <li>energy performance</li> <li>environmental impact (LCA) and lifecycle cost (LCC)</li> <li>techno-economic performance.</li> </ul>                                                                                                                            |
|                                  | Renovation's scenarios are then ranked based on their performance in these three assessment categories.  The scenarios generated are based on the building's current condition. For this, the Renovation Modelling toolkit (BIM and Digital Twin) receives monitored |
|                                  | data from the multi-sensorial network through the Middleware infrastructure                                                                                                                                                                                          |

54

Table 22 - RINNO Renovation Optimizer and Planner - Outputs

| Renovation Optimizer and Planner                           | Outputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selected Renovation scenario and sequence of interventions | All potential renovation scenarios are ranked based on appropriate KPIs and for each building investigated. The planning of interventions also considers suitable KPIs on retrofitting time, cost, and disturbance. The RINNO Renovation Optimizer and Planner selects the optimum renovation scenario for each building as well as the optimum sequence of interventions. This then feeds through the <b>Renovation Workflow and Transaction Manager</b> and used in WP4 for the planning of the construction process, in WP5 for the validation of the renovation process and is demonstrated in WP6. |

## 5.2.3 RINNO Retrofitting Manager (RRM)

#### 5.2.3.1 On-the-Job AR Environment

This module belongs to the **RINNO Retrofitting Manager**. On-the-Job AR Environment is responsible for the design of services and interfaces, as well as their integration to the workplace, to support workers within an attractive ambient environment. The target stakeholders of this module are:

- Support employees in carrying out specific operating procedures.
- Support employees by providing access to advanced information and content.

Services are provided for the support of all procedures required by the project (training and assembly) and in any procedure that this information can add value (first group of target stakeholders). An AR Assistance tool & AR Training sub-module has been developed targeting the training of employees (second group of target stakeholders) "off-line" with predefined scenarios, and/or on-site with AR techniques. An approach both "on the job" (based on Augmented Reality capabilities), and in a "simulated environment" (totally based on Virtual Reality) is implemented in order to guide users (novice workers) in their activity by presenting the step-by-step procedures interactively, by providing guidance on tools, materials, and components involved and their use. These modules are enhanced to support functionalities such as image-video sharing and VoIP. Useful information is provided to decrease:

- the construction site-work time as well as the training time of novice workers.
- the errors and faults during the renovation processes.
- any delays, since potential problems could be solved on-site at the time they arise.

Useful data are gathered from the **multi-sensorial network** to create a knowledge base. Data are retrieved from AR scanners, drones, robots, cobots, photogrammeters

55

and allow to determine if a procedure visualized through these tools has been correctly implemented. This information is useful as training material as well for workers on real site conditions. Another source of information is from smart devices and HMIs such as smart phones, tablets and smart helmets that provide location-based data and constitute communication means available among workers.

A variety of services are available through the AR Assistance tool & Training tool. Such services include:

- exchange of information and communication
- AR-assisted architectural narratives
- geolocating BIM data on the construction site
- work-instruction delivery
- 4D phasing of construction work sites
- training platform for maintenance and repair
- AR for facility management
- object tracking
- target recognition (ML techniques).

The **Middleware infrastructure** provides interoperability among sensors and devices with different protocols, data necessary for the On-the-Job AR Environment component. It allows any kind of information to be transferred to the end users.

The presentation of the information transferred is achieved through innovative Human Machine Interfaces (HMIs) that belong to the Interactive Layer and it can be considered strictly integrated component of the On-the-Job AR Environment component. The services are designed so that through visualization tools of the available HMIs, information, and content from pre-packaged scenarios as well as generated data at runtime (based on information coming from the **multi-sensorial network**) can be distributed directly to the HMIs. These HMIs are in the form of smart devices such as smart phones and tablets as well as smart helmets and provide guidance to the whole operation (showing for example where components should be installed and further information to modules installation).

This component success is interconnected with the interaction with multiple components as depicted in the schema below.

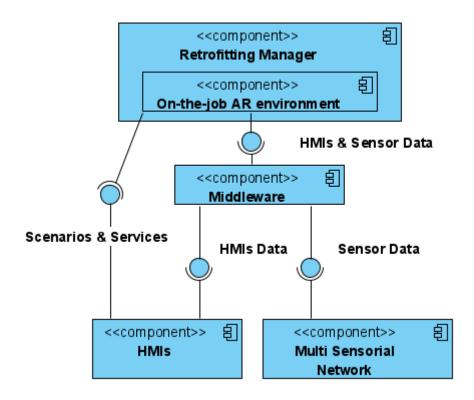



Figure 15 - On-the-Job AR Environment Component Diagram

The following tables explains in detail the main interfaces, and their interconnection with the On-the-Job AR Environment component.

Table 23 - On-the-Job AR Environment - Inputs

| On-the-Job AR Environment | Inputs Description                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HMIs data                 | Through smart devices such as tablets and smart phones as well as smart helmets, workers provide information (location-based data and communication data in the form of sound, video, text, and AR content) so that the AR Assistance tool & AR Training tool can provide guidance and practical information for training purposes along with a variety of services |
| Sensor Data               | Through a plethora number of devices and sensors such as AR scanners, drones, robots and photogrammeters, the data gathered allow to determine if the renovation procedures are correctly implemented. This data from the training scenarios also forms a knowledgebase to be exploited for the training of inexperienced workers. This data must                   |

| support the services provided by the AR Assistance tool and AR Training tool. Such data for example must include |
|------------------------------------------------------------------------------------------------------------------|
| geolocating BIM Data of the construction site                                                                    |

Table 24 - On-the-Job AR Environment - outputs

| On-the-Job AR Environment | Outputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenarios & Services      | The AR Assistance tool & AR Training tool makes available a variety of services and training, with predefines scenarios directly to the HMIs. The services provided are exchange of information and communication, AR-assisted architectural narratives, geolocating BIM data on the construction site, workinstruction delivery, 4D phasing of construction work sites, training platform for maintenance and repair, AR for facility management, object tracking, target recognition (ML techniques). For example, appropriate guidance during installation via AR interfaces – pointing to the exact location where a component shall be installed as well as alerts on health/safety issues in the form of sound, video, text, and AR content |

# 5.2.3.2 RINNO Retrofitting Manager Engine (RRM Engine)

This module is part of the RINNO Retrofitting Manager, which integrates the following modules:

- The process Industrialization module
- The process optimization module
- The on-the-job AR Facilitating Environment module.

The RRM Engine should be able to help execute, analyse, monitor, and manage the renovation process, while it can also guide and even train the workforce on-site through the cloud.

### Especially, it should:

- Make data accessible in real-time through a user-friendly interface with rolebased authorization.
- Optimize the performance of works and the supply chain minimizing costs and saving space.
- Provide real-time reports on renovation progress to allow decision making.
- Notify stakeholders via email to remind submitting their data in a time.

This module is developed based on the Smart Connected Buildings (SCB) platform made of multiple interconnected components as depicted in the following schema.

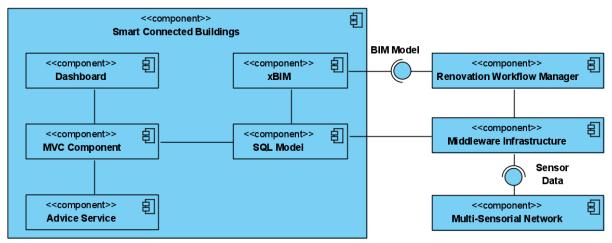



Figure 16 - RINNO Retrofitting Manager Engine Component Diagram

The following table explains the main interfaces, and their interconnection with the RRM Engine component.

Table 25 - RINNO Retrofitting Manager Engine - Inputs

| RINNO Retrofitting Manager Engine | Inputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor Data                       | Through the Middleware Infrastructure, deployed sensors (temperature, humidity, motion, light, power, gas, etc.) provide real-time data to be stored in the SQL Model (SCB database), then used for immediate visualization or informing users via alerts/advices after processing                                                                                                                                                                                                       |
| BIM Model                         | After being created by the RPDA component, the Renovation Workflow Manager provides the BIM model to be used by the SCB platform. An interface between the BIM model uploaded in IFC file format, and the SCB platform is provided through an existing BIM Academy library xBim, providing easier access to the IFC file by creating a temporary, in memory database. Thus, easier extraction of the building, its floors, apartments and rooms so they can be stored in an SQL database |

Table 26 - RINNO Retrofitting Manager Engine - Outputs

| RINNO Retrofitting Manager Engine | Outputs Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor Data                       | In RINNO Suite, the performance dashboard of each pilot is going to be visualised through graphs and informative fields. The performance dashboard presents the values received real-time from sensors installed to the pilot building along with the theoretical values for the optimised energy consumption of the building in order to compare and adapt the system. The administrator of the platform is able to see the dashboards of all buildings. The building owner and the tenants are able to see their building's dashboard. |
| BIM Model                         | In RINNO Suite, BIM model is available per building for visualizing the 3D view of the buildings. Building owners and tenants have the opportunity to "walk" through the building, see the devices attached to each floor and flat, check the values of the sensors and receive notifications in case of exceeding max values. Moreover, through the interconnection with e-cockpit tool from WP4, the BIM model of each building visualizes the renovation process on the 3D model of the building.                                     |

### 5.2.3.3 Process Industrialization

The process industrialization (E-Cockpit) is sub-module that is part of **RINNO Retrofitting Manager**. It represents the global digitalization of all the site construction activities to provide relevant information on the "Production Monitoring". This module enables an objective, real time, permanent and effortless supervision of the site tasks.

The objective is to transmit synchronous information for reactivity actions and necessary adaptations to every type of events (ex: Delays on delivery, lack of manpower, bad weather, etc.).

In addition, the E-Cockpit gather productivity objective measurement information for management pertinent decision.

This permits resources savings by a close production monitoring and focus on adding value to the construction period with smooth activities organization and deployment.

The E-Cockpit is linked to the RINNO Workflow process to ensure the Execution works to keep on track. The following key aspect are part of the global monitoring:

Progress monitoring (resources, time, costs, etc.)

60

- Just-in-time Logistics
- Coworking and collaboration spatial organization on site
- Quality monitoring

As the E-Cockpit collects many data, feedback adjusts the RINNO – AI module for a permanent increase of performance for current or future projects.

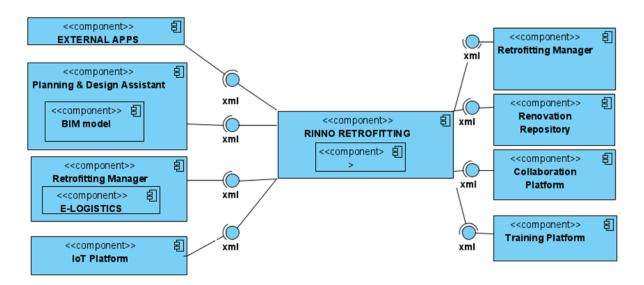



Figure 17 - E-cockpit Component Diagram

The following tables explain in detail the main interfaces, and their interconnection with the **RINNO Retrofitting Manager** component.

Table 27 - E-Cockpit - Inputs

| E-cockpit                | Inputs Description                                                                                                                                                                                                                                                                  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Orchestration            | Central element of the e-Cockpit platform:  Data acquisition for processing Broadcasting of information(streaming)  The business logic and the processes to be implemented within the framework of the platform, possibly with access to the company IS and to third-party services |  |  |
| Warnings & Notifications | Brick allowing to send an alert or a notification to a person, at the request of the orchestrator or following an event.  An alert corresponds to a signal to be sent to a person on the site (site manager, for example) so that they act                                          |  |  |

|                | 1                                                                                                                                                                                                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | immediately in the event of danger or action required, with potential stoppage on the site in the event of danger.                                                                                                                                                     |
|                | A notification corresponds to a message sent "for information" without immediate action required                                                                                                                                                                       |
|                | Brick offering a set of production monitoring services for construction sites, which can be activated according to the desired configuration for a given site.                                                                                                         |
|                | It makes it possible to offer a modular and adjustable architecture with services such as:                                                                                                                                                                             |
|                | Control of security risks                                                                                                                                                                                                                                              |
|                | Site progress monitoring                                                                                                                                                                                                                                               |
| Services       | Assistance in piloting logistics the management of co-activities                                                                                                                                                                                                       |
| services       | Others can easily be added later.                                                                                                                                                                                                                                      |
|                | This brick manages the context and the correlation of the information received by e-Cockpit.                                                                                                                                                                           |
|                | Operation:                                                                                                                                                                                                                                                             |
|                | The brick receives information tagged by the Orchestrator with the list of associated services that have to process it. Thus, the same information can be used for assistance in the management of logistics and for monitoring the progress of the site, for example. |
|                | Administration module to perform:                                                                                                                                                                                                                                      |
|                | Managing objects, their attributes, and associated services                                                                                                                                                                                                            |
| Administration | Management of access rights to reporting to the administration platform (IAM: Identity and Access Management)                                                                                                                                                          |
|                | Management of configurations and types of work sites, with the list of services activated or not on a work site, on an object, which are mandatory or optional, etc.                                                                                                   |

| Real-time | e mor   | nitoring  | of  | platform |
|-----------|---------|-----------|-----|----------|
| objects,  | active  | services, | and | overall  |
| platform  | status. |           |     |          |

| E-cockpit                | Outputs Description                                                                                                                                                                                                                                                                                                                                                                           |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                          | What services are activated for a given site                                                                                                                                                                                                                                                                                                                                                  |  |
| Orchestration            | To which services each data must be routed (by adding the appropriate tags so that the "Services" brick knows which pipelines to activate for processing)                                                                                                                                                                                                                                     |  |
|                          | What additional treatments need to be carried out for a specific use case (e.g.: once the manufactured objects have been recognized, call the BIM API to update it and ensure site monitoring).                                                                                                                                                                                               |  |
|                          | An alert or notification can take the form of:                                                                                                                                                                                                                                                                                                                                                |  |
| Warnings & Notifications | <ul> <li>A push notification on a specifically developed mobile application.</li> <li>A message</li> <li>An email</li> <li>A sound or light signal on the site.</li> </ul>                                                                                                                                                                                                                    |  |
| Services                 | Each information is then transmitted via<br>the corresponding module, to the<br>associated processing pipelines. For<br>example, the "progress" module I sends<br>to the RINNO Retrofitting Management<br>pipeline, for comparison with the<br>workflow and the planned schedule,<br>then to the predictions with the trained<br>model to identify the possible<br>consequences of variations |  |
| Administration           | Escalation of notifications or alerts in case of unavailability of a brick of the solution, via the "Alerts and Notifications" brick.  These management services are exposed in the form of Rest API to be integrated with external bricks in the enterprise IS if necessary, in the future.                                                                                                  |  |
|                          | These same APIs are used to drive and manage these services via an administrative Web HMI.                                                                                                                                                                                                                                                                                                    |  |

# 5.2.3.4 Process Optimization

### 5.2.3.4.1 Optimization Strategy offsite/onsite

This sub-module is the background technology of the Recommendation Engine sub-module. It consists of a multi-level decision framework. This sub-module is based on a excel document, where the user can score each criterion based on the project constraints. The first level (strategic level) conducts a feasibility study and evaluates the applicability of offsite construction. The second level (tactic level) proposes an integrated approach for the decision-making problem that combines the Analytical Hierarchy Process (AHP) and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE). The combination of both approaches enables a careful evaluation of different construction methods and scenarios for the same project.

For the tactic level, it enables the decision maker to compare different industrialized solutions based on multi criteria decision methods. The decision maker finds the attributes of criterion in the AEC guides.

On top of this document, this sub-module delivers:

- Offsite renovation score
- List of offsite drivers
- List of offsite constraints

Based on these results, the user is able to decide clearly to offsite or onsite the renovation works.

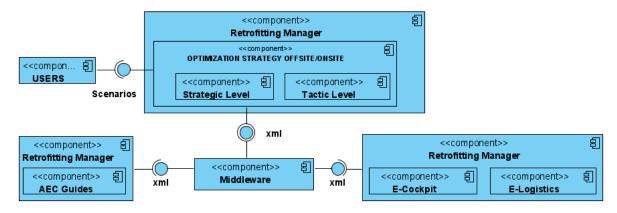



Figure 18 - Offsite/Onsite strategy Component Diagram

The following table explains in detail the main interfaces, and their interconnection with this module.

Table 28 - Offsite/Onsite strategy - Inputs

| Offsite/Onsite strategy      | Inputs Description                                                |  |
|------------------------------|-------------------------------------------------------------------|--|
| User Input (strategic level) | <ul><li> Economic Factors</li><li> Site-related factors</li></ul> |  |

|                           | <ul> <li>Design and structural factors</li> <li>Factors related to the project.</li> <li>Factors related to the deadline, planning.</li> <li>Labour-related factors</li> <li>Number of floors</li> </ul>                                                                                                                                                                                                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Input (tactic level) | <ul> <li>Experience and mastery of the solution</li> <li>Competence of the available workforce</li> <li>Climatic conditions</li> <li>Transport</li> <li>Corporate culture</li> <li>Availability of lifting tools</li> <li>Weight</li> <li>Environment</li> <li>Acceptability of the solution</li> <li>Architectural/aesthetic form</li> <li>Cost</li> <li>Complexity of the construction</li> <li>Speed / Planning/ Delay</li> <li>Security</li> <li>Quality</li> <li>Repeatability</li> <li>Relationship with the supplier</li> </ul> |

Table 29 - Offsite/Onsite strategy - Outputs

| Offsite/Onsite strategy      | Outputs Description                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Input (strategic level) | An off-site construction score for the overall project as well as a score for each factor category.  Two lists of factors: one list containing the factors that support off-site construction (the factors with the most positive weighted score) and a second list containing the factors that do not support it (the factors with the most negative weighted score). |
| Output (tactic level)        | As a first step, it enables the importance of the different factors to be compared in order to weight them as objectively as possible, checking the consistency of the decision-maker's judgement. Secondly, this level allows to classify the compared alternatives.                                                                                                  |

# 5.2.3.4.2 E-Logistics

This sub-module is also part of **RINNO Retrofitting Manager** (RRM). It deals with the organization, display and tracking of all the material supply on and off site to allow risk 65

minimization, lower costs and save space during the renovation process. The "Elogistics" platform provides better control and overview of the whole supply chain during the renovation process addressing the related market need. To complement the renovation process optimization, the VIA-Process toolkit facilitates the whole lifecycle of the renovation process with an easy-to-use dashboard that assigns roles/tasks, solve any bottlenecks, and improve the engagement and monitoring of owners/users during renovation. This task forms the Process Optimization module of the RRM.

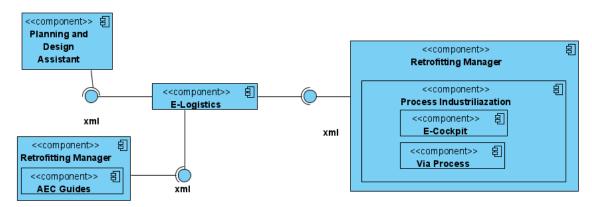



Figure 19 - E-logistics Component Diagram

The following tables explains in detail the main interfaces, and their interconnection with the E-Logistics module.

| Table | > 3U = | F_10 | gistics | - Inni   | itc |
|-------|--------|------|---------|----------|-----|
| 10010 | - 00 - | L-10 | GISTICS | - 11 100 | JIS |

| E-cockpit                                       | Inputs Description                                                                                                                        |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| BIM Model                                       | The e-logistics uses the quantities of materials, supplies to determine the period of manufacturing and installation                      |
| Renovation Simulation and Assessment<br>Toolbox | The e-logistics checks the solutions chosen for renovation, the suppliers selected for materials manufacturing and delivery               |
| AEC Guides                                      | The e-logistics uses the installation and storage guidelines integrated into this guide to optimize the integration of technology on site |
| Planning                                        | The e-logistics uses the planning to coordinate all the deliveries and installations as per each task deadlines and project milestone     |

Table 31 - E-logistics - Outputs

| E-cockpit | Outputs Description                   |
|-----------|---------------------------------------|
| E-cockpit | The e-logistics and e-cockpit have an |

|             | important interaction in order to optimize   |
|-------------|----------------------------------------------|
|             | the deliveries on site as per the real time  |
|             | progress on site to optimize storage and     |
|             | installation flow                            |
|             | Via-process is used to visualize the flow of |
| Via-Process | operations measured and monitored by         |
|             | e-logistics                                  |

# 5.2.4 Building Lifecycle Renovation Manager (BLRM)

# 5.2.4.1 Intelligent Renovation Assistant

Intelligent Renovation Assistant (IRA) is the module of **Building Lifecycle Renovation Manager**. It follows the building renovation project through its whole lifetime. IRA consists of Renovation Validation and Benchmarking tool, Building Renovation Passports, Renovation Roadmap tool and Logbook Tool that allows to monitor and validate the renovation process, as well as generate information about the building. Accordingly, Validation & Benchmarking sub-module gets design data from **RINNO Planning & Design Assistant** and compare them with actual data. This module also collects and normalize data from all available renovated buildings to create a repository for benchmarking. In that way a building information (logbook) including historic, on-site or automatically generated data enabled by IoT is formed, in accordance with the Building Renovation Passports (BRPs) approach to follow a building throughout its lifetime. This leads to the formation of the Renovation Roadmap of the building.

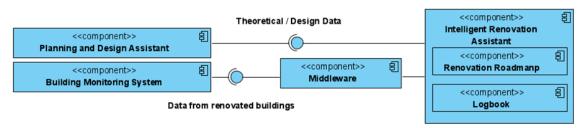



Figure 20 - Intelligent Renovation Assistant Component Diagram

Table 32 - Intelligent Renovation Assistant - Inputs

| Intelligent Renovation Assistant            | Inputs Description                                                                          |
|---------------------------------------------|---------------------------------------------------------------------------------------------|
| Theoretical and design data                 | Assistant gets from RPDA data from the design phase of renovation                           |
| Data from all available renovated buildings | Assistant gets from Building Monitoring<br>System data from the whole renovation<br>history |

Table 33 - Intelligent Renovation Assistant - outputs

|   | Intelligent Renovation Assistant | Outputs Description                    |
|---|----------------------------------|----------------------------------------|
| Ī | Renovation Roadmap               | Renovation Roadmap includes            |
|   |                                  | systematic renovation solutions over a |

|         | long period of time and in a sensible order aiming to achieve deep-staged renovation, in accordance with the BRPs approach                                                    |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logbook | It consists of an inventory of building-<br>related information accompanied by<br>technologies for managing/ monitoring<br>real time parameters along with<br>historical data |

## 5.2.5 RINNO Renovation Repository

**RINNO Renovation Repository** includes a wide range of proficient solutions that fit the requirements of the stakeholders. **Repository** provides both conventional and also innovative renovation solutions. Repository feeds the **Marketplace of the Operational Platform** with solutions and technologies. Moreover, **Marketplace** provides to the **Repository** new technologies delivered by Third-Party Stakeholders, in order to optimize each renovation solution. The **RRR** also generates automatic databases of the technologies and the renovation products. The technologies and solutions of the Repository assists other main components of **RINNO** Suite to generate optimal scenarios and the optimal renovation workflow.

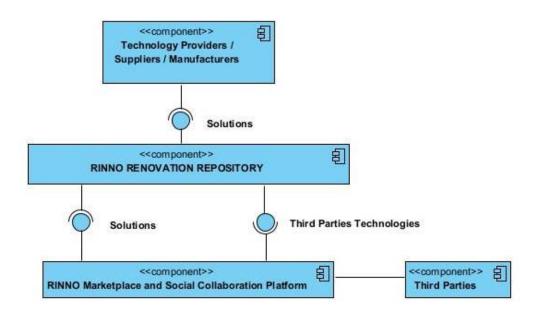



Figure 21 - RINNO Renovation Repository Component Diagram

Table 34 - Renovation Repository - Inputs

| RINNO Renovation Repository     | Inputs Description              |
|---------------------------------|---------------------------------|
| Solutions provided to the RINNO | The solutions of the Repository |
| Renovation Repository by the    | include:                        |

| Technology Providers | <ul> <li>Envelope retrofitting solutions.</li> <li>Energy systems (RES harvesting, hybrid &amp; Storage Solutions).</li> </ul> |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                      | Retrofitting process improvement techniques                                                                                    |
|                      | Business Models                                                                                                                |

| RINNO Renovation Repository                                                 | Inputs Description                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Third parties' technologies                                                 | RINNO Renovation Repository can be crowd-populated through the Marketplace by third parties to facilitate its natural expansion and ensure that both novel and conventional solutions are included and can be used for optimizing each renovation case.        |
| Solutions provided to the Marketplace<br>by the RINNO Renovation Repository | <ul> <li>The solutions of the Repository include:</li> <li>Envelope retrofitting solutions.</li> <li>Energy systems (RES harvesting, hybrid &amp; Storage Solutions)</li> <li>Retrofitting process improvement techniques</li> <li>Business Models.</li> </ul> |

# 5.2.6 Multi - Sensorial Network

**Multi - Sensorial Network** is a set of heterogeneous physical devices that are installed in the buildings. The **Multi-Sensorial Network** consists of smart devices and sensors. The buildings are monitored in energy and in environmental aspects. The Network allows the connection between the buildings and the RINNO Suite. More specifically, the **Multi-Sensorial Network** feeds the **Operational Platform** of the RINNO Suite, through the **Middleware**, in order to monitor the performance of the building both before and after the renovation.

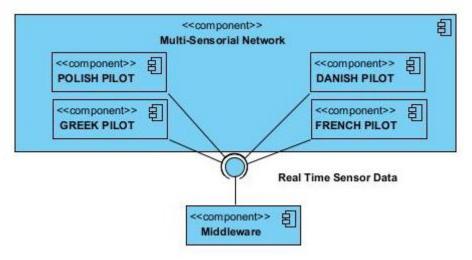



Figure 22 - Multi-Sensorial Network Component Diagram

Table 35 - Multi-Sensorial Network - Outputs

| Multi-Sensorial Network | Outputs Description                                                                                                                                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Real Time Sensor Data   | The Building Monitoring System gets information from any kind of device installed in the buildings through the Middleware. Middleware categorizes the data according to the building and the apartment/block of each building |

### 5.2.7 Middleware

Middleware is as mentioned above the "glue" of the system. It ensures connectivity and interoperability between heterogeneous physical devices, and it allows data exchange among different components and modules of the RINNO Suite. Middleware feeds the Dashboard Monitoring System of the Operational Platform with sensor data from the Multi-Sensorial Network in order to monitor the building performance in real time. Moreover, the modules of Planning and Design Assistant (RPDA), such as Renovation Modeling and Optimizer and Planner assists Middleware with information about the building in form of an IFC file, with renovation scenarios as well as with the optimal renovation scenario workflow. Thus, Middleware returns the building, renovation and sensor information to the Renovation Simulation and Assessment toolbox of the same component (RPDA) in order to simulate and assess the fitting information. Additionally, Renovation Workflow & Transactions Manager (RTWM) assists **Middleware** with the smart contracts that have been signed between the stakeholders of the project. RTWM also enables, via Middleware, the information exchange between key components of RINNO Suite. Finally, Middleware serves the On-the job AR environment module of RINNO Retrofitting Manager with HMI and Sensor data.

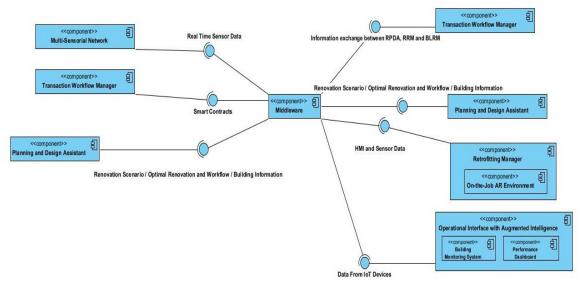



Figure 23 - Middleware Component Diagram

Table 36 - Middleware - Inputs

| Middleware | Inputs Description |
|------------|--------------------|
| 70         |                    |

Renovation's scenarios are then ranked based on their performance in these three assessment categories. BIM model in the form of Industry Foundation Classes (IFC). The Industry Foundation Classes (IFC) data model is intended to describe architectural, building and construction Renovation Scenario / Optimal industry data. It is a platform neutral, Renovation and Workflow / Building open file format specification that is not Information (IFC) controlled by a single vendor or group of vendors. It is an object-based file format with a data model developed by building SMART (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering, and construction (AEC) industry, and is a commonly used collaboration format in Building information modelling (BIM) based projects. Hyperledger Fabric based smart contracts are used to enforce the **Smart Contracts** agreements between the building tenants/owners and other stakeholders (AEC). The Building Monitoring System gets information from any kind of device installed in the buildings through the Real Time Sensor Data Middleware. Middleware categorizes the data according to the building and the apartment/block of each building

Table 37 - Middleware - Outputs

| Middleware                                                                               | Outputs Description                                                                                                                                        |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renovation Scenario / Optimal<br>Renovation and Workflow / Building<br>Information (IFC) | Renovation's scenarios are then ranked based on their performance in these three assessment categories.                                                    |
|                                                                                          | BIM model in the form of Industry Foundation Classes (IFC).                                                                                                |
|                                                                                          | The Industry Foundation Classes (IFC) data model is intended to describe architectural, building and construction industry data. It is a platform neutral, |
|                                                                                          | open file format specification that is not                                                                                                                 |

|                                                                                  | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  | controlled by a single vendor or group of vendors. It is an object-based file format with a data model developed by building SMART (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering, and construction (AEC) industry, and is a commonly used collaboration format in Building information modelling (BIM) based projects  The Building Monitoring System gets                                                                        |
| Data From IoT Devices                                                            | sensor data from every apartment of each pilot in order to monitor building performance and extract useful information such as e.g., short-term energy consumption predictions, data correlations, comparisons, reports                                                                                                                                                                                                                                                                                             |
| HMIs data                                                                        | Through smart devices such as tablets and smart phones as well as smart helmets, workers provide information (location-based data and communication data in the form of sound, video, text, and AR content) so that the AR Assistance tool & AR Training tool can provide guidance and practical information for training purposes along with a variety of services                                                                                                                                                 |
| Sensor Data                                                                      | Through a plethora number of devices and sensors such as AR/VRs scanners, drones, robots and photogrammeters, the data gathered allow to determine if the renovation procedures are correctly implemented. This data from the training scenarios also form a knowledgebase to be exploited for the training of inexperienced workers. This data must support the services provided by the AR Assistance tool and AR Training tool. Such data for example must include geolocating BIM Data of the construction site |
| All information that should be exchanged between RPDA, RRM, and BLRM components. | The RWM tool guarantees information exchange and interoperability between the main components of RINNO Suite, and during the whole lifecycle of the renovation project.  BIM Model: this tool allows providing the BIM model from the IR definition stage, where it is just a set of information needs, until the operation and end of life stage.                                                                                                                                                                  |

#### 5.2.8 Renovation Workflow & Transactions Manager (RWTM)

#### 5.2.8.1 Renovation Workflow Manager (RWM) Tool

**Renovation Workflow Manager** (RWM) Tool is a module that belongs to the RINNO **Renovation Workflow and Transactions Manager** component. It enables information exchange and interoperability between **RINNO Planning & Design Assistant** (RPDA), **RINNO Retrofitting Manager** (RRM), and **RINNO Lifecycle Renovation Manager** packages.

The RWM tool allows the supervision of the whole lifecycle of the building renovation project by:

- Automating the quality assurance processes at all stages of the renovation project.
- Improving project coordination and project management reporting.
- Allowing project performance and data visualization.

Thus, technically the RWM tool should:

- Implement a documented collaboration format
- Propose and implement a suite of associated verification libraries
- Implement a cryptographic signature
- Be equipped with dashboarding capabilities
- Adopt a RESTful API infrastructure with Web service APIs

This component is developed based on the Deep Renovation Digital Plan (DRIP) platform whose main components are the Xbim Xplorer platform and the Digital Plan of Work (DPoW) as depicted in the schema below.

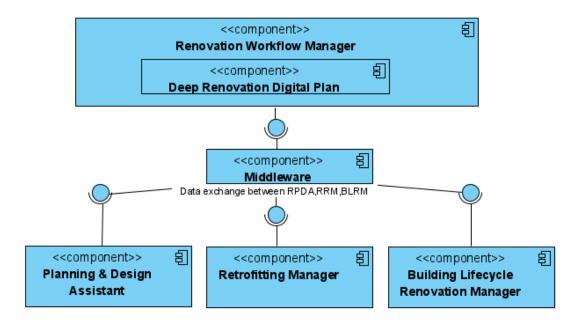



Figure 24 - Renovation Workflow Tool Component Diagram

The following table explains the main interfaces, and their interconnection with the RWM component.

Table 38 - Renovation Workflow Tool - Inputs

| Renovation Workflow Tool                                        | Inputs Description                                                                                                                                                        |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All information that should be exchanged between RPDA, RRM, and | The RWM tool guarantees information exchange and interoperability between the main components of RINNO Suite, and during the whole lifecycle of the renovation project.   |
| BLRM components                                                 | BIM Model: this tool allows providing the BIM model from the IR definition stage, where it is just a set of information needs, until the operation and end of life stage. |

Table 39 - Renovation Workflow Tool - Outputs

| Renovation Workflow Tool                                        | Outputs Description                                                                                                                                                       |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All information that should be exchanged between RPDA, RRM, and | The RWM tool guarantees information exchange and interoperability between the main components of RINNO Suite, and during the whole lifecycle of the renovation project.   |
| BLRM components                                                 | BIM Model: this tool allows providing the BIM model from the IR definition stage, where it is just a set of information needs, until the operation and end of life stage. |

#### 5.2.8.2 Renovation Transaction manager toolkit

Transaction Manager is a module of **Renovation Workflow and Transaction Manager** (RWTM). The establishment of simpler, more effective transactions reduces transaction costs, provides transparency, assurance and provenance, and thus better and more trusted collaboration without the need for a central authority or a legal system. Transaction Manager uses distributed ledger (blockchain-type) technologies in order to translate conventional agreements into smart contracts for automated transactions. Online contracts are used to enforce the agreements between the building tenants/owners and other stakeholders. The RWTM encodes, and compiles rules written in human readable language into a functional, machine-readable language that is translatable to smart contracts in the next levels of the pipeline using appropriate compiler techniques and communication APIs.

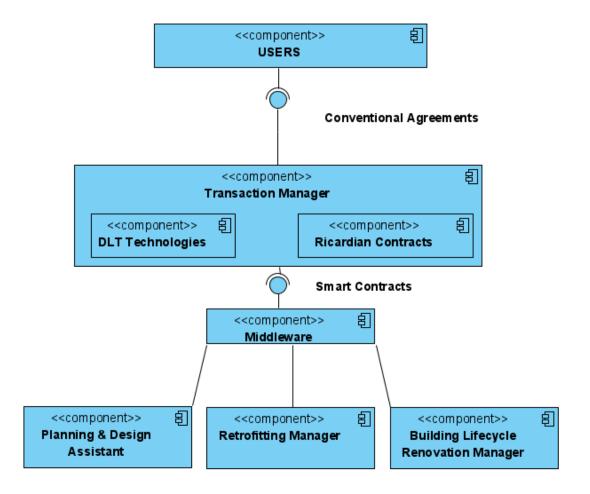



Figure 25 - Transaction Manager Component Diagram

Table 40 - Transaction Manager - Inputs

| Transaction Manager     | Inputs Description                                                                                      |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| Conventional Agreements | Human readable agreements between stakeholders, tenants and participants e.g. renovation subcontractors |

Table 41 - Transaction Manager - Outputs

| Transaction Manager | Inputs Description                                                                                                                               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Smart Contracts     | Hyperledger Fabric based smart contracts can be used to enforce the agreements between the building tenants/owners and other stakeholders (AEC). |

## 6 Deployment View

Deployment view describes how and where the system is deployed, which physical requirements are essential for the system to go live. Another important factor is the dependencies of the various components, modules, and sub-modules, their hardware requirements, and their physical constraints. In this view the physical environment where the system runs is defined, including:

- Hardware and Technical requirements.
- Mapping of software elements to the runtime environment.
- Third-party software requirements.
- Network requirements.

In this chapter it is analysed the deployment environment of the RINNO Suite.

# 6.1 RINNO Main Components, Modules, and Sub-modules Deployment Environment & Hardware and Technical Requirements

#### 6.1.1 RINNO Operational Interface with Augmented Intelligence

#### 6.1.1.1 Social Collaboration Platform

Social Collaboration and **Middleware** are deployed on the Cloud Base Infrastructure of RINNO Suite the workstations and they are interconnected with a specialized intranet, that could be wired, wireless or a combination of both technologies.

It is important to mention that some Human Machine Interfaces (HMIs), due to their huge, produced data (such as video content) they are connected directly to components that need this form of data since the **Middleware** is not able to handle this type of information. Only metadata are forwarded to the **Middleware** or even to the repository.

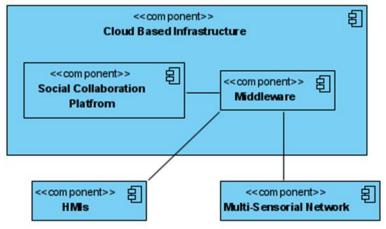



Figure 26 - Social Collaboration Platform Deployment View

Table 42 - Social Collaboration platform's Hardware and Technical Requirements

| Name                          | Hardware and Technical Requirements                                                                                                                                                                               |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Middleware                    | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0  Rails 6.0.3 |
|                               | Python 3.8.6  A PC workstation in the cloud with                                                                                                                                                                  |
| Social Collaboration Platform | the following minimum requirements:  • i5 CPU  • 4GB RAM  • 500 GB hard disk  • Wi-Fi connection  • Ethernet connection  • USB connection  • Windows 7 operating system or better                                 |

#### 6.1.1.2 Marketplace

As shown in figure below, RINNO Marketplace is a cloud-based application interconnected with the Cloud Based Infrastructure of RINNO Suite. RINNO Marketplace connects with **RINNO Renovation Repository** directly.

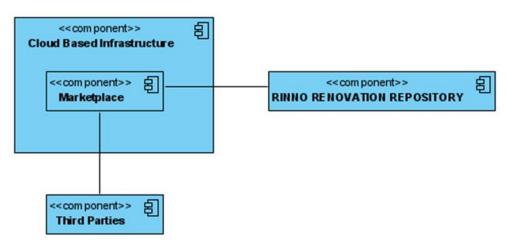



Figure 27 - Marketplace Deployment View

Table 43 - Marketplace Hardware and Technical Requirements

| Name              | Hardware and Technical Requirements                                                                                                                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RINNO Marketplace | <ul> <li>A PC workstation with the following minimum requirements:</li> <li>i5 CPU</li> <li>4GB RAM</li> <li>500 GB hard disk</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>USB connection</li> <li>Windows 7 operating system or better</li> </ul> |

#### 6.1.1.3 Building Monitoring System

Building Monitoring System should be installed on the cloud based infrastructure of RINNO Suite as shown in figure below. It connects directly with **RINNO Planning & Design Assistant** and feeds with data from the Building Performance Toolkit & Dashboard. Building Monitoring System gets data from the IoT devices through the **Middleware** installed in the Cloud Base Infrastructure of RINNO Suite.

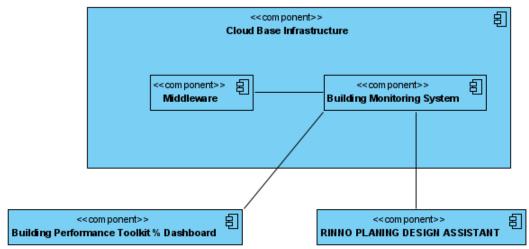



Figure 28 - Building Monitoring System Deployment View

Table 44 - Building Monitoring System Hardware and Technical Requirements

| Name                       | Hardware and Technical Requirements                                                                                                                                                                          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building Monitoring System | A PC workstation one the cloud with the following minimum requirements:  • i5 CPU  • at least 8GB RAM  • 500GB hard disk  • Wi-Fi connection  • Ethernet/Bluetooth connection  • Windows 10 operating system |

|            | 11                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|            | Use of open standard formats and libraries as  IFC  XML  COBie  XLS  bSDD  xBIMToolkit                                                     |
| Middleware | A PC workstation one the cloud the following minimum requirements:  • 15 CPU  • at least 8GB RAM  • 250GB hard disk  • Ethernet connection |
|            | Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0 Rails 6.0.3 Python 3.8.6                                                  |

#### 6.1.1.4 Central Dashboard

#### 6.1.1.4.1 Building Performance Toolkit & Dashboard

Building Performance Toolkit & Dashboard should be installed on PC Workstation as shown in figure below. Building Monitoring System feeds with data the Building Performance Toolkit & Dashboard.

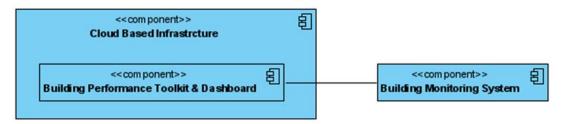



Figure 29 - Building Performance Toolkit & Dashboard Deployment View

Table 45 - Building Performance Toolkit & Dashboard Hardware and Technical Requirements

| Name                                        | Hardware and Technical Requirements                                                                                                                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building Performance Toolkit &<br>Dashboard | A PC workstation in the cloud with the following minimum requirements:  • i5 CPU  • 4GB RAM  • 500GB hard disk  • Wi-Fi connection  • Ethernet connection  • Windows 10 |

79

| <ul><li>MySQL 5.7</li><li>NodeJs 14.17 (TBU)</li></ul> |
|--------------------------------------------------------|
| <ul> <li>Angular 10.1.4</li> </ul>                     |

#### 6.1.1.4.2 AR User Interfaces (UIs)

This Section is referred to the User Interfaces (UIs), which are delivered by the AR onthe-job training toolkit and it is deployed as presented in Section 4.1.3.1.

#### 6.1.2 RINNO Planning & Design Assistant (RPDA)

#### 6.1.2.1 RINNO Renovation Optimizer and Planner Environment

The RINNO Optimizer and Planner component should be installed on a server machine, as it must be able to exchange data with the rest of the modules at any time. The server machine should be connected to the Internet or to a local network which interconnects the various tools and enables it to communicate with both the rest of the modules of the RPDA and the RWTM. The same machine that hosts some other tool of the RPDA can be used to host this module, too.



Figure 30 - RINNO Renovation Optimizer and Planner's Deployment View

Table 46 - RINNO Renovation Optimizer and Planner Hardware and Technical Requirements

| Name       | Hardware and Technical Requirements                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Middleware | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection |
|            | Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0 Rails 6.0.3 Python 3.8.6                                          |

#### 6.1.2.2 Renovation Simulation & Assessment tool

#### 6.1.2.2.1 Energy Assessment tool

For the energy assessment tool, all required modules should be installed as shown in figure below, located in the Cloud Base Infrastructure of RINNO Suite.

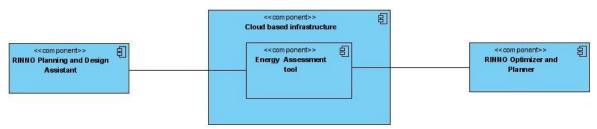



Figure 31 - Energy Assessment Platform's Deployment View

Table 47 - Energy Assessment Platform's Hardware and Technical Requirements

| Name                    | Hardware and Technical Requirements                                                                                                                                                                                                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy Assessment Tool  | <ul> <li>Windows 10 operating system</li> <li>Python Environment (e.g., anaconda or miniconda)</li> </ul>                                                                                                                                                                                                        |
| Middleware              | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0  Rails 6.0.3  Python 3.8.6                                                                                  |
| Multi-Sensorial Network | A local installation with the following requirements:  Wi-Fi or Ethernet connection  Bluetooth connection  USB connection for direct connections to third devices (PCs, tablets, smartphones, other)  QUAD-CORE arm Cortex-A9 (set ARMv7)  4GB RAM  16GB ROM  Display 10"  Android 4.4 (KitKat) operating system |

#### 6.1.2.2.2 Techno-economical Assessment Tool

The Techno-Economical Assessment tool is installed on the cloud to ensure the continuous exchange of data with the Renovation Modelling toolkit and to the RINNO Optimizer and Planner. The server machine should be always connected to the internet through Ethernet cable.



Figure 32 - Techno-economical Assessment Tool Deployment View

Table 48 - Techno-economical Assessment Tool Hardware and Technical Requirements

| Name                              | Hardware and Technical Requirements                                                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Middleware                        | A PC workstation one the cloud the following minimum requirements:  Is CPU  at least 8GB RAM  250GB hard disk  Ethernet connection      |
|                                   | <ul> <li>Ubuntu Server 18.04 or higher operating system with:</li> <li>Ruby 2.7.0</li> <li>Rails 6.0.3</li> <li>Python 3.8.6</li> </ul> |
| Techno-economical Assessment Tool | <ul> <li>Windows 10 operating system</li> <li>Python Environment (e.g., anaconda or miniconda)</li> </ul>                               |

#### 6.1.2.2.3 Environmental, Cost and Social Assessment tool

Environmental, cost, and social assessment module is developed under a web application framework scheme on the cloud. The full-stack framework is able to execute Ruby and Python programming language, providing the ability to compute KPI's for the whole life cycle. The environmental, cost and assessment tool is installed in a server machine, providing continuous access from and to the Renovation Modelling toolkit and to the RINNO Optimizer and Planner. The cloud infrastructure should be always connected to the internet through Ethernet cable.



Figure 33 - Environmental, Cost and Social Assessment Tool's Deployment View

Table 49 - Environmental, Cost and Social Assessment Hardware and Technical Requirements

| Name       | Hardware and Technical Requirements                                          |
|------------|------------------------------------------------------------------------------|
| Middleware | A PC workstation one the cloud the following minimum requirements:  • 15 CPU |

|                                              | <ul><li>at least 8GB RAM</li><li>250GB hard disk</li><li>Ethernet connection</li></ul>                    |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                              | Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0 Rails 6.0.3 Python 3.8.6                 |
| Environmental, Cost and Social<br>Assessment | <ul> <li>Windows 10 operating system</li> <li>Python Environment (e.g., anaconda or miniconda)</li> </ul> |

#### 6.1.2.3 Renovation Modelling

#### 6.1.2.3.1 Building Capturing and Mapping Deployment View

Building, Capturing and Mapping toolbox is installed in a PC workstation locally. It provides BIM model to the system in the form of Industry Foundation Classes (IFC) via the **Middleware** located in Cloud Based Infrastructure.

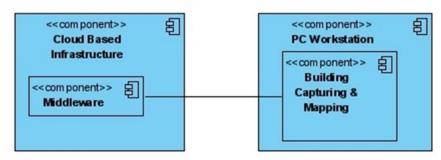



Figure 34 - Building Capturing and Mapping Deployment View

Table 50 - Building Capturing and Mapping Hardware and Technical Requirements

| Name                                       | Hardware and Technical Requirements                                                                                                                                                                         |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building, Capturing and Mapping<br>toolbox | A PC workstation the following minimum requirements:  Is CPU  at least 8GB RAM  250GB hard disk  Ethernet connection Use of open standard formats and libraries as  IFC  XML  COBie  XLS  bSDD  xBIMToolkit |

#### 6.1.2.3.2 Renovation Digital-Twin component Deployment View

Renovation digital-Twin sub module is installed to the cloud-based infrastructure of RINNO Suite and can be accessed through REST API web services.

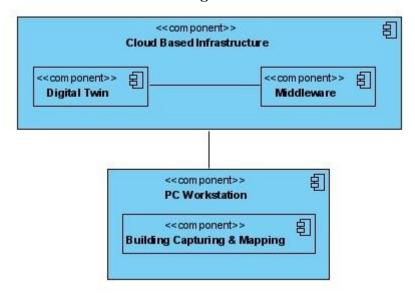



Figure 35 - Renovation Digital Twin Deployment View

Table 51 - Renovation Digital Twin Hardware and Technical Requirements

| Name       | Hardware and Technical Requirements                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Middleware | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection |
|            | Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0 Rails 6.0.3 Python 3.8.6                                          |

### 6.1.3 RINNO Retrofitting Manager (RRM)

#### 6.1.3.1 On-the-Job AR Environment

On the Job AR environment is installed locally and connects with the **Middleware** on the Cloud Base Infrastructure of RINNO Suite.

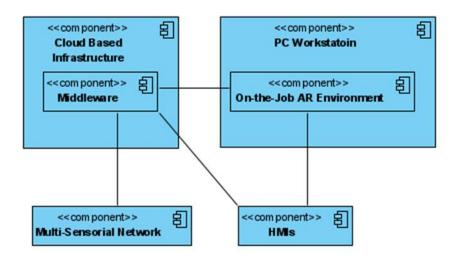



Figure 36 - On-the-Job AR Environment Deployment View

Table 52 - On-the-Job AR Environment Hardware and Technical Requirements

| Name                      | Hardware and Technical Requirements                                                                                                                                                                                             |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Middleware                | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0  Rails 6.0.3  Python 3.8.6 |
| On-the-Job AR Environment | <ul> <li>i5 CPU (last Generation)</li> <li>4GB RAM</li> <li>500GB hard disk</li> <li>NVidia GPU GTX 650 2GB</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>Windows 7 operating system or better.</li> </ul>    |

#### 6.1.3.2 RINNO Retrofitting Manager Engine

As shown in figure below, the Smart Connected Buildings (SCB) platform is a cloud-based application and needs to be deployed on a server with all its components (Model, View, Controller and Advice Service components), interconnected with the Cloud Base Infrastructure of RINNO Suite.

The SQL Model (Database) size is constrained by the physical hard drive space available. The number of concurrent connections including API posts, that the SCB can support is linked to the speed of which data can be queried and posted all have a relationship to the physical memory and CPU.

The **Multi-Sensorial Network** and a variety of HMIs can be in a local installation that provides information to the cloud through the **Middleware Infrastructure**.

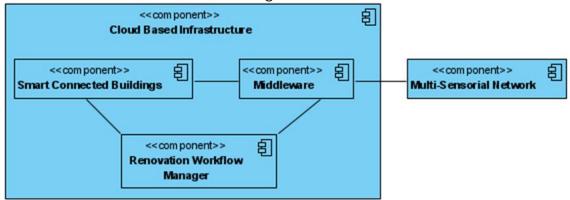



Figure 37 - RINNO Retrofitting Manager Engine Deployment View

Table 53 - RINNO Retrofitting Manager Engine Hardware and Technical Requirements

| Name                    | Hardware and Technical Requirements                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-sensorial Network | <ul> <li>A local installation with the following requirements:</li> <li>Wi-Fi or Ethernet connection</li> <li>Bluetooth connection</li> <li>USB connection for direct connections to third devices (PCs, tablets, smartphones, other)</li> <li>QUAD-CORE arm Cortex-A9 (set ARMv7)</li> <li>4GB RAM</li> <li>16GB ROM</li> <li>Display 10"</li> <li>Android 4.4 (KitKat) operating system</li> </ul> |
| SCB platform            | A PC Workstation on the cloud is needed with the following requirements:  • i9  • 32GB RAM  • 5TB hard disk  • Nvidia GeForce RTX 3080 10GB  • Wi-Fi connection  • Ethernet connection  • Windows 7                                                                                                                                                                                                  |

#### 6.1.3.3 Process Industrialization

The e-cockpit platform should be installed on the cloud as shown in figure below. It connects and exchanges data with other components and external apps in real time, through the **Middleware** installed in the Cloud Base Infrastructure of RINNO Suite.

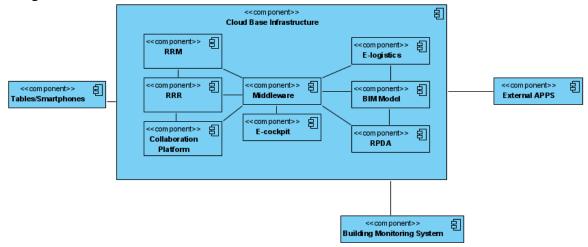



Figure 38 - E-Cockpit Deployment View

Table 54 - E-Cockpit Hardware and Technical Requirements

| Name      | Hardware and Technical Requirements                                                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-cockpit | A PC workstation on the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Use of open standard formats and libraries as:  IFC  XML  COBie  XLS |

#### 6.1.3.4 Process Optimization

#### 6.1.3.4.1 E-Logistics

The e-logistics platform is installed on the Cloud Base Infrastructure of RINNO Suite as shown in figure below. It provides information to the **Renovation Transaction & Workflow Manager** and to e-cockpit platform through the **Middleware** installed in the Cloud Base Infrastructure of RINNO Suite.

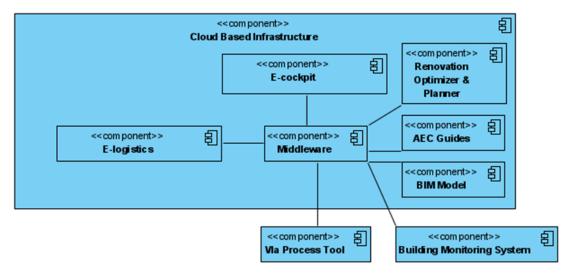



Figure 39 - E-Logistics Deployment View

Table 55 - E-Logistics Hardware and Technical Requirements

| Name      | Hardware and Technical Requirements                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>A PC workstation on the cloud the following minimum requirements:</li> <li>I5 CPU</li> <li>at least 8GB RAM</li> <li>250GB hard disk</li> <li>Ethernet connection</li> </ul> |
| E-cockpit | Use of open standard formats and libraries as:  IFC  XML  COBie  XLS                                                                                                                  |

#### 6.1.3.4.2 Optimization Strategy offsite/onsite

The module installed on the cloud and retrieves data from the AEC guide via the **Middleware** the technical characteristics (installation, maintenance, performance...) of each technology and the rest of the input criteria are identified by the user. All this to note each tactical and strategic phase to optimize the choice of the offsite/on site. The tool is in excel format with a detailed simulation via Python for the tactical phase. So, the output data can be converted into XML to feed the E-cockpit and E-logistics via the **Middleware**.

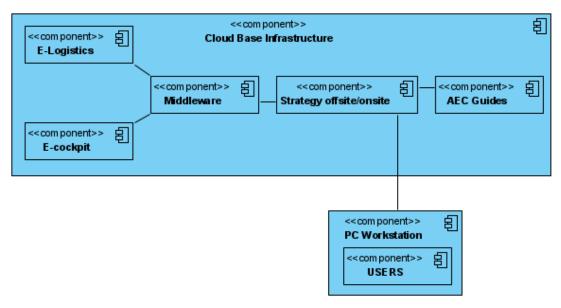



Figure 40 - Optimization Strategy offsite/onsite tool Deployment View

Table 56 - Optimization Strategy offsite/onsite tool Hardware and Technical Requirements

| Name                                      | Hardware and Technical Requirements                                                                                                                                                                                             |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimization Strategy offsite/onsite tool | A PC workstation on the cloud the following minimum requirements:  I5 CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Use of open standard formats and libraries as:  IFC  XML  COBie  XLS                         |
| Middleware                                | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0  Rails 6.0.3  Python 3.8.6 |

#### 6.1.4 Building Lifecycle Renovation Manager (BLRM)

#### 6.1.4.1 Intelligent Renovation Assistant

As shown in the figure below, Intelligent Renovation Assistant on the Cloud Based Infrastructure of RINNO Suite. It interacts directly with **Renovation Planning & Design Assistant** (RPDA) and it connects with the Building Monitoring System through the **Middleware** installed in the Cloud Base Infrastructure of RINNO Suite.

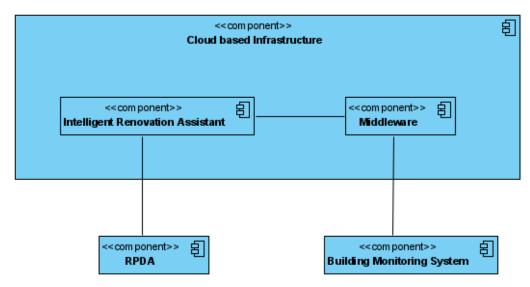



Figure 41 - Intelligent Renovation Assistant Deployment View

Table 57 - Intelligent Renovation Assistant Hardware and Technical Requirements

| Name                             | Hardware and Technical Requirements                                                                                                                                                                                                                                                         |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intelligent Renovation Assistant | <ul> <li>A PC workstation on the cloud is needed with the following minimum requirements:</li> <li>i5 CPU is preferable</li> <li>at least 4GB RAM</li> <li>500GB hard disk</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>Windows 7 operating system or better.</li> </ul> |
| Middleware                       | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0                                                                                        |

| • Rails 6.0.3 |
|---------------|
| Python 3.8.6  |

#### 6.1.5 RINNO Renovation Repository

RINNO Renovation Repository consists of novel building and energy renovation technologies and also suitable business models. Stakeholders can have online access to the **Repository** through the **Marketplace**. It is worth to mention, that the **Repository** can be continuously updated with new technologies from third parties through the **Marketplace**.

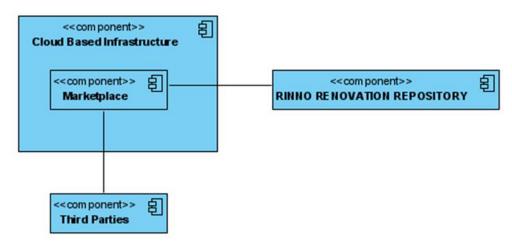



Figure 42 - RINNO Renovation Repository Deployment View

Table 58 - RINNO Renovation Repository Technical and Hardware Specifications

| Name                        | Hardware and Technical Requirements                                                                                                                                                                                                                                   |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RINNO Renovation Repository | <ul> <li>A PC workstation with the following minimum requirements:</li> <li>i5 CPU</li> <li>4GB RAM</li> <li>500 GB hard disk</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>USB connection</li> <li>Windows 7 operating system or better</li> </ul> |

#### 6.1.6 Multi - Sensorial Network

**Multi-sensorial Network** is deployed locally in each pilot. It consists of a set of smart devices, smart sensors and legacy equipment that are installed on-site in each building. It directly communicates with the Middleware that is installed in the cloud.

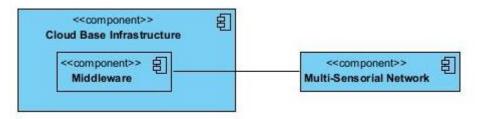



Figure 43 - Multi-Sensorial Network Deployment View

Table 59 - Multi-Sensorial Network Hardware and Technical Requirements

| Name                    | Hardware and Technical Requirements                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-Sensorial Network | <ul> <li>A local installation with the following requirements:</li> <li>Wi-Fi or Ethernet connection</li> <li>Bluetooth connection</li> <li>USB connection for direct connections to third devices (PCs, tablets, smartphones, other)</li> <li>QUAD-CORE arm Cortex-A9 (set ARMv7)</li> <li>4GB RAM</li> <li>16GB ROM</li> <li>Display 10"</li> <li>Android 4.4 (KitKat) operating system</li> </ul> |

#### 6.1.7 Middleware

Middleware as well as Planning and Design Assistant, Transaction Workflow Manager and Operational Interface with Augmented Intelligence are deployed on the cloud. On the Job AR environment module is installed locally and connects with the Middleware on the Cloud Base Infrastructure of RINNO Suite. The Multi-Sensorial **Network** and a variety of HMIs can be in a local installation that provide information to the cloud through the Middleware Infrastructure.

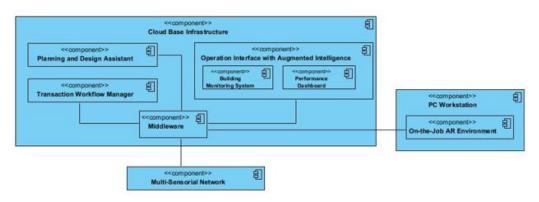



Figure 44 - Middleware Deployment View

Table 60 - Middleware Hardware and Technical Requirements

| Name                                                 | Hardware and Technical Requirements                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Middleware                                           | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection                                                                                                                                                                                                                                                                   |
|                                                      | Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0 Rails 6.0.3 Python 3.8.6                                                                                                                                                                                                                                                                                                            |
| Multi-Sensorial Network                              | <ul> <li>A local installation with the following requirements:</li> <li>Wi-Fi or Ethernet connection</li> <li>Bluetooth connection</li> <li>USB connection for direct connections to third devices (PCs, tablets, smartphones, other)</li> <li>QUAD-CORE arm Cortex-A9 (set ARMV7)</li> <li>4GB RAM</li> <li>16GB ROM</li> <li>Display 10"</li> <li>Android 4.4 (KitKat) operating system</li> </ul> |
| On-the-Job AR Environment                            | <ul> <li>i5 CPU (last Generation)</li> <li>4GB RAM</li> <li>500GB hard disk</li> <li>NVidia GPU GTX 650 2GB</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>Windows 7 operating system or better</li> </ul>                                                                                                                                                                          |
| Operational Interface with Augmented<br>Intelligence | A PC workstation one the cloud with the following minimum requirements:  • i5 CPU  • at least 8GB RAM  • 500GB hard disk  • Wi-Fi connection  • Ethernet/Bluetooth connection  • Windows 10 operating system  Use of open standard formats and libraries as  • IFC                                                                                                                                   |

| • XML                           |
|---------------------------------|
| • COBie                         |
| • XLS                           |
| • bSDD                          |
| <ul> <li>xBIMToolkit</li> </ul> |

#### 6.1.8 Renovation Workflow & Transactions Manager (RWTM)

#### 6.1.8.1 Renovation Workflow Manager Tool

As shown in figure below, the RWM platform is composed of two parts, one is cloud-based application (the Digital Presentation Component) and another desktop-based application installed locally, a set of verification tools, including the Xbim Xplorer component.

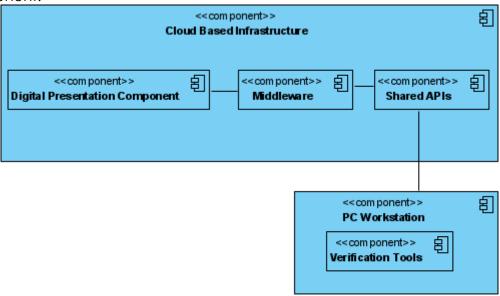



Figure 45 - Renovation Workflow Manager Tool Deployment View

Table 61 - Renovation Workflow Manager Hardware and Technical Requirements

| Name                           | Hardware and Technical Requirements                                                                                                                                                                                                                           |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification Tools             | <ul> <li>A PC Workstation on the cloud with the following requirements:</li> <li>i9 CPU</li> <li>32GB RAM</li> <li>500GB hard disk</li> <li>Nvidia GeForce RTX 3080 10GB</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> <li>Windows 7</li> </ul> |
| Digital Presentation Component | A PC Workstation on the cloud is needed with the following requirements:  • i9  • 32GB RAM                                                                                                                                                                    |

| <ul> <li>Nvidia GeForce RTX 3080 10GB</li> <li>Wi-Fi connection</li> <li>Ethernet connection</li> </ul> |
|---------------------------------------------------------------------------------------------------------|
| <ul><li>Windows 7</li></ul>                                                                             |

#### 6.1.8.2 Renovation Transaction Manager

As shown in figure below, the **Transaction Manager** is a web service module and needs to be deployed on a server with all its features, interconnected with the Cloud Base Infrastructure of RINNO Suite.

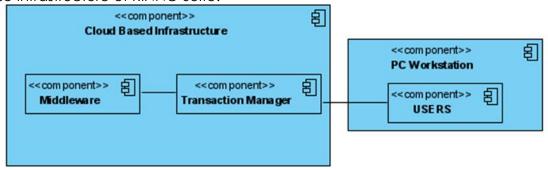



Figure 46 - Renovation Transaction Manager Tool Deployment View

Table 62 - Renovation Transaction Manager Hardware and Technical Requirements

| Name                | Hardware and Technical Requirements                                                                                                                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transaction Manager | <ul><li>Windows 10 operating system</li><li>Solidity Compiler</li></ul>                                                                                                                                                         |
| Middleware          | A PC workstation one the cloud the following minimum requirements:  IS CPU  at least 8GB RAM  250GB hard disk  Ethernet connection  Ubuntu Server 18.04 or higher operating system with:  Ruby 2.7.0  Rails 6.0.3  Python 3.8.6 |

## 7 Information View

#### 7.1 Overview of Information View

The figure below describes the data flow. The present viewpoint outlines the way that the system manages and distributes information.

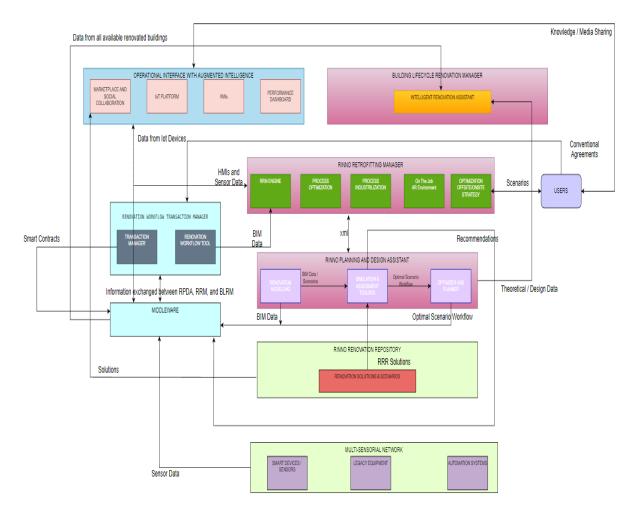



Figure 47 - Overall Information View of Architecture

#### 7.2 Components of Information View per renovation phase

It is worth noticing that the main components of RINNO Suite are not only divided in layers but they are also divided by phase according to the functionality of their main tools in the lifecycle of the renovation. As mentioned above, renovation has three phases namely planning and designing phase (before renovation), retrofitting phase (during renovation) and monitoring phase (after renovation). The uses of RINNO Suite's main components per phase are presented in the present section. RTWM, Operational Interface with Augmented Intelligence, Middleware and Sensorial Network are the components that operate during all the three renovation phases, since the tools of the first control the whole workflow and all the transactions that take place inside the project and the platform of the second is running from the start of the renovation process. Middleware interconnects the prime components while Sensorial Network is installed in the building from the beginning of the project.

RPDA is responsible for the planning and designing phase. Renovation modeling component's is in charge for the extraction of the BIM file and the description of the renovation scenarios. Renovation Simulation & Assessment tool combines the later information in order to define the KPIs of various categories for each of the renovation scenarios. With the aid of RINNO Optimizer and Planner and its novel DSS tool, the optimal scenario that has to be followed in the retrofitting phase is selected.

In the retrofitting phase, RRM chooses the optimal working schedule. In particular, the tools used by RRM select the most optimal renovation workflow, taking into consideration factors such as safety, quality, cost, environmental impact, and other specifications. RRM also has tools that provide real time assistance to workers. Novel technologies and renovation solutions from RRR are also available during the renovation.

During the monitoring phase, BLRM validates the performance of the building. More specifically, BLRM evaluates the value of the renovation by comparing theoretical and actual data. Finally, BLRM is also in charge for generating a renovation roadmap and logbook which contain useful building and renovation information.

## 8 Conclusions

This document presents the final version of the RINNO architecture framework, marking a significant milestone in the project's development. The architecture is structured around eight main components and twelve modules, supported by various sub-modules. Each responsible partner has contributed detailed specifications, ensuring a comprehensive understanding of the system's internal structure, features, inputs, and outputs.

Throughout the document, the methodology adopted for designing the framework has been detailed (Chapter 2), along with an in-depth analysis of stakeholders and their primary concerns (Chapter 3). The conceptual architecture and renovation workflow have been thoroughly examined (Chapter 4), providing a clear vision of how RINNO operates.

Following the IEEE 42010 standard for "Systems and Software Engineering - Architecture Description," this deliverable has defined three fundamental perspectives of the system architecture:

- Functional View (Chapter 5): Highlights the system's functional elements, their responsibilities, and how they interact.
- Deployment View (Chapter 6): Outlines the system's deployment strategy, including dependencies, hardware, and software requirements.
- Information View (Chapter 7): Explains the data models, information flow, and distribution within the system.

This document represents the final version of Deliverable 1.10, fully defining the RINNO architectural framework. All component interactions, communication mechanisms, and system specifications have been consolidated to ensure a seamless and efficient integration of the RINNO framework, supporting its full-scale deployment and operational success.

## **ABOUT RINNO**

RINNO is a four-year EU-funded research project that aspires to deliver greener, bio-based, less energy- intensive from a life cycle perspective and easily applicable building renovation elements and energy systems that will reduce the time and cost required for deep energy renovation, while improving the building energy performance. Its ultimate goal is to develop, validate and demonstrate an operational interface with augmented intelligence and an occupant-centered approach that will streamline and facilitate the whole lifecycle of building renovation.

For more information, please visit https://rinno-h2020.eu/





































This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 892071